Stability and Optimality Properties of Sequential Action Control for Nonlinear and Hybrid Systems
非线性和混合系统顺序动作控制的稳定性和最优性
基本信息
- 批准号:1662233
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will greatly extend a powerful new method for control of robots and vehicles, called sequential action control (SAC). One widely used approach to controlling complicated systems is to solve a real-time numerical optimization problem for the magnitude of the next few control pulses, where the all the pulses have a constant width. However even with powerful processors it can be difficult to compute these values fast enough. SAC addresses this challenge by instead computing the optimal width and relative start time of the next control pulse. For many problems of interest, this change in control strategy greatly simplifies computation, to the point that infeasible control problems become tractable. SAC allows analytical solutions to some problems, and speeds computations by up to eight orders of magnitude for others. SAC is naturally compatible with common features of modern control design, including hybrid systems that switch discretely between a collection of continuous dynamic behaviors; quantized systems where inputs, states, and outputs may take only a finite set of constant values; and systems with nonlinear dynamics. SAC can be shown to recover the globally optimal control signal in a number of analytically solvable cases. In other representative test cases, the computed SAC input provides performance that is numerically indistinguishable from the optimum. Optimal or near-optimal input signals are of no value if small disturbances cause the system to rapidly diverge from the desired behavior. Therefore practical controllers must also ensure that small disturbances to the controlled system cause only small deviations in the system response -- a property known as stability. This project seeks to rigorously derive SAC performance guarantees for a broad class of systems, as well as to show conditions under which SAC ensures stability. The Darwin humanoid robot will be used as a high-dimensional, nonlinear, hybrid testbed for this research. Control of the Darwin robot may be implemented in the open-source Robot Operating System (ROS), allowing a robust and verifiable SAC distribution for dissemination. The results of this project will enable greatly improved and verifiable control over systems such as rehabilitation robots, assistive devices, rotor vehicles, and driverless cars, using widely available and low-cost computing platforms such as mobile phones. Benefits to society from this project include enhanced safety and performance of these automated infrastructure systems. The project also includes classroom innovation, international collaboration, outreach activities through the Museum of Science and Industry in Chicago, and dissemination of open-source software.The twofold purpose of this project is to develop sequential action control (SAC) into an actionable, near-universal method for synthesizing embedded real-time control as well as to provide foundational results on optimality, stability, and geometry. The method is computationally efficient and scales to high dimensional problems. Moreover, SAC extends naturally to Lie groups, common in applications such as robotics and automation. The project will address three fundamental questions. First, it will identify conditions under which SAC can be applied directly or iteratively to achieve optimal control. Second, it will derive conditions for stability. Third, it will adapt SAC to systems evolving on Lie groups, to achieve global performance for multibody mechanical systems. The broader impacts for this work include outreach, technology transfer to rehabilitation, the development of online courses in dynamics and analysis, and international collaboration. The PI is currently working with the Museum of Science and Industry, and as part of the project the PI, and graduate and undergraduates involved in the PI's laboratory, will participate in a National Robotics Week exhibit in the main rotunda of the museum with an estimated viewership of over ten thousand on-site visitors.
该项目将极大地扩展一种用于控制机器人和车辆的强大的新方法,称为顺序动作控制(SAC)。一种广泛使用的控制复杂系统的方法是解决下几个控制脉冲的幅度的实时数值优化问题,其中所有的控制脉冲都具有恒定的宽度。然而,即使使用功能强大的处理器,也很难足够快地计算这些值。SAC通过计算下一个控制脉冲的最佳宽度和相对开始时间来解决这一挑战。对于许多感兴趣的问题,控制策略的这种改变极大地简化了计算,以至于不可行的控制问题变得容易处理。SAC允许对一些问题进行分析解决,并将其他问题的计算速度提高高达8个数量级。SAC自然与现代控制设计的常见特征兼容,包括在一组连续动态行为之间离散切换的混合系统;输入、状态和输出可能只取有限常量值的量化系统;以及具有非线性动态的系统。在许多解析可解的情况下,可以证明SAC恢复全局最优控制信号。在其他有代表性的测试用例中,计算的SAC输入提供的性能在数值上与最优值难以区分。如果微小的干扰导致系统迅速偏离期望的行为,则最优或接近最优的输入信号没有价值。因此,实用的控制器还必须确保对受控系统的小干扰只会导致系统响应中的小偏差--这一特性被称为稳定性。该项目寻求严格地为广泛类别的系统获得SAC性能保证,并展示SAC确保稳定性的条件。达尔文人形机器人将被用作这项研究的高维、非线性、混合试验台。达尔文机器人的控制可以在开源机器人操作系统(ROS)中实现,从而允许稳健和可验证的SAC分发用于传播。该项目的成果将使康复机器人、辅助设备、转子车辆和无人驾驶汽车等系统的控制得到极大改善和验证,使用手机等广泛可用的低成本计算平台。该项目为社会带来的好处包括增强了这些自动化基础设施系统的安全性和性能。该项目还包括课堂创新、国际合作、通过芝加哥科学与工业博物馆开展的外联活动以及开放源代码软件的传播。该项目的双重目的是将顺序动作控制(SAC)发展成一种可操作的、近乎通用的方法来合成嵌入式实时控制,并提供关于最优化、稳定性和几何的基础结果。该方法计算效率高,适用于高维问题。此外,SAC自然扩展到李群,这在机器人和自动化等应用中很常见。该项目将解决三个基本问题。首先,它将确定可以直接或迭代应用SAC以实现最优控制的条件。第二,它将为稳定创造条件。第三,它将使SAC适应在李群上进化的系统,以实现多体机械系统的全局性能。这项工作的更广泛影响包括外联、向康复转让技术、开发动力学和分析在线课程以及国际合作。国际机器人协会目前正在与科学与工业博物馆合作,作为该项目的一部分,国际机器人协会以及参与该协会实验室的研究生和本科生将参加在博物馆主圆形大厅举行的国家机器人周展览,估计现场观众超过1万人。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CPL-SLAM: Efficient and Certifiably Correct Planar Graph-Based SLAM Using the Complex Number Representation
- DOI:10.1109/tro.2020.3006717
- 发表时间:2020-12-01
- 期刊:
- 影响因子:7.8
- 作者:Fan, Taosha;Wang, Hanlin;Murphey, Todd
- 通讯作者:Murphey, Todd
Feedback synthesis for underactuated systems using sequential second-order needle variations
- DOI:10.1177/0278364918776083
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Giorgos Mamakoukas;M. A. MacIver;T. Murphey
- 通讯作者:Giorgos Mamakoukas;M. A. MacIver;T. Murphey
Efficient Computation of Higher-Order Variational Integrators in Robotic Simulation and Trajectory Optimization
机器人仿真和轨迹优化中高阶变分积分器的高效计算
- DOI:10.1007/978-3-030-44051-0_40
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fan, T.;Schultz, J.;Murphey, T.
- 通讯作者:Murphey, T.
Efficient and Guaranteed Planar Pose Graph optimization Using the Complex Number Representation
使用复数表示进行高效且有保证的平面位姿图优化
- DOI:10.1109/iros40897.2019.8968044
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Fan, Taosha;Wang, Hanlin;Rubenstein, Michael;Murphey, Todd
- 通讯作者:Murphey, Todd
Superlinear Convergence Using Controls Based on Second-Order Needle Variations
- DOI:10.1109/cdc.2018.8619405
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Giorgos Mamakoukas;M. A. MacIver;T. Murphey
- 通讯作者:Giorgos Mamakoukas;M. A. MacIver;T. Murphey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Murphey其他文献
Fast Ergodic Search with Kernel Functions
使用核函数进行快速遍历搜索
- DOI:
10.48550/arxiv.2403.01536 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Muchen Sun;Ayush Gaggar;Peter Trautman;Todd Murphey - 通讯作者:
Todd Murphey
Mixed-Strategy Nash Equilibrium for Crowd Navigation
人群导航的混合策略纳什均衡
- DOI:
10.48550/arxiv.2403.01537 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Muchen Sun;Francesca Baldini;Peter Trautman;Todd Murphey - 通讯作者:
Todd Murphey
Todd Murphey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Murphey', 18)}}的其他基金
FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control
FRR:协作研究:用于水生机器人感知和控制的无监督主动学习
- 批准号:
2237576 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CPS: Medium: Information based Control of Cyber-Physical Systems operating in uncertain environments
CPS:中:在不确定环境中运行的信息物理系统的基于信息的控制
- 批准号:
1837515 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Information-driven Autonomous Exploration in Uncertain Underwater Environments
RI:小型:协作研究:不确定水下环境中信息驱动的自主探索
- 批准号:
1717951 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NRI: Task-Based Assistance for Software-Enabled Biomedical Devices
NRI:针对软件支持的生物医学设备的基于任务的援助
- 批准号:
1637764 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NRI: Autonomous Synthesis of Haptic Languages
NRI:触觉语言的自主合成
- 批准号:
1426961 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
- 批准号:
1334609 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Mutually Stabilized Correction in Physical Demonstration
CPS:协同:协作研究:物理演示中的相互稳定校正
- 批准号:
1329891 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Physical Design and Feedback Control of Hybrid Mechanical Systems
混合机械系统的物理设计和反馈控制
- 批准号:
1200321 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RI: Small: Hierarchical Planning, Estimation, and Control for Hybrid Mechanical Systems
RI:小型:混合机械系统的分层规划、估计和控制
- 批准号:
1018167 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Planning and Control for Overconstrained Mechanisms
职业:过度约束机制的规划和控制
- 批准号:
0951688 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似海外基金
Data-efficient Safe Control with Recovery-to-Optimality Guarantees
数据高效的安全控制,并保证恢复最佳性
- 批准号:
2227311 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Clarification of Minimax Optimality in Fair Regression under Demographic Parity
人口均等情况下公平回归中极小极大最优性的澄清
- 批准号:
23K13011 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robustness and Optimality of Estimation and Testing
估计和测试的稳健性和最优性
- 批准号:
2310769 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Investigating the role of the Ccr4-Not complex in regulating codon optimality-mediated mRNA decay
研究 Ccr4-Not 复合体在调节密码子最优性介导的 mRNA 衰减中的作用
- 批准号:
10749985 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
- 批准号:
2218713 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10623162 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10330674 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Nonparametric Methodology for Learning from People: Inference, Algorithms, and Optimality
向人学习的非参数方法:推理、算法和最优性
- 批准号:
2210734 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual