FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control

FRR:协作研究:用于水生机器人感知和控制的无监督主动学习

基本信息

  • 批准号:
    2237576
  • 负责人:
  • 金额:
    $ 41.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Rapid developments in machine learning and artificial intelligence in recent years have greatly advanced perception capabilities and thus the level of autonomy for machines, as evidenced by great strides made in autonomous vehicles and aerial drones over the last decade. These successes are due to advances in computing hardware and large datasets for training learning algorithms. However, for many real-world robotic applications, a robot’s environment may be so complex that no existing datasets are adequate, and synthetically generating high-fidelity data in simulation may not be possible. In such cases a robot will need to collect data in its real operating environment to learn. The robot will need to purposefully plan its motion and interaction with the environment to enable sensors to gather the most informative data. This award supports research to create algorithms for efficient robot active learning for perception and control of complex systems in highly dynamic and uncertain environments, such as the aquatic environment. Advances will have broad implications in applications of robotic technologies, such as aquatic debris cleanup, underwater search and rescue, and personalized minimally invasive robotic surgery. In particular, the team will collaborate with the United States Coast Guard and apply the developed algorithms to improve their search capacities. The goal of this project will be accomplished through the pursuit of three interconnected research thrusts: 1) active learning for building data-driven perception models with multi-sensory data; 2) active learning of models describing temporal evolution of perceptional features for control purposes, using data-driven operators to describe latent dynamics; and 3) experimental demonstration and evaluation with a running case study of autonomous aquatic debris removal using an unmanned surface vehicle equipped with soft sensor-rich robotic arms. This work will advance the fundamental understanding of design principles for learning-based perception models when multiple sensing modalities are involved. The project will moreover develop new theory for learning the evolution of latent features, including convergence guarantees and controllability analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,机器学习和人工智能的快速发展极大地提高了机器的感知能力,从而提高了机器的自主水平,过去十年在自动驾驶汽车和无人机方面取得的巨大进步就是明证。这些成功归功于计算硬件和用于训练学习算法的大型数据集的进步。然而,对于许多现实世界的机器人应用来说,机器人的环境可能非常复杂,以至于没有现有的数据集是足够的,并且在仿真中合成高保真数据可能是不可能的。在这种情况下,机器人将需要在其真实的操作环境中收集数据进行学习。机器人将需要有目的地计划其运动和与环境的交互,以使传感器能够收集最具信息量的数据。该奖项支持创建高效机器人主动学习算法的研究,以便在高度动态和不确定的环境(如水环境)中感知和控制复杂系统。机器人技术的进步将对机器人技术的应用产生广泛的影响,如清理水上碎片、水下搜救和个性化微创机器人手术。特别是,该团队将与美国海岸警卫队合作,并应用开发的算法来提高他们的搜索能力。这个项目的目标将通过追求三个相互关联的研究项目来实现:1)主动学习,利用多传感器数据建立数据驱动的感知模型;2)主动学习描述用于控制目的的感知特征的时间演变的模型,使用数据驱动的操作者描述潜在的动力学;3)实验演示和评价,包括使用配备了丰富软测量的机械臂的无人水面车辆自动清除水生碎片。这项工作将促进对涉及多个感知模式的基于学习的感知模型设计原则的基本理解。此外,该项目还将开发新的理论来学习潜在特征的演变,包括收敛保证和可控性分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd Murphey其他文献

Fast Ergodic Search with Kernel Functions
使用核函数进行快速遍历搜索
  • DOI:
    10.48550/arxiv.2403.01536
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muchen Sun;Ayush Gaggar;Peter Trautman;Todd Murphey
  • 通讯作者:
    Todd Murphey
Mixed-Strategy Nash Equilibrium for Crowd Navigation
人群导航的混合策略纳什均衡
  • DOI:
    10.48550/arxiv.2403.01537
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muchen Sun;Francesca Baldini;Peter Trautman;Todd Murphey
  • 通讯作者:
    Todd Murphey

Todd Murphey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd Murphey', 18)}}的其他基金

CPS: Medium: Information based Control of Cyber-Physical Systems operating in uncertain environments
CPS:中:在不确定环境中运行的信息物理系统的基于信息的控制
  • 批准号:
    1837515
  • 财政年份:
    2018
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Information-driven Autonomous Exploration in Uncertain Underwater Environments
RI:小型:协作研究:不确定水下环境中信息驱动的自主探索
  • 批准号:
    1717951
  • 财政年份:
    2017
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Stability and Optimality Properties of Sequential Action Control for Nonlinear and Hybrid Systems
非线性和混合系统顺序动作控制的稳定性和最优性
  • 批准号:
    1662233
  • 财政年份:
    2017
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
NRI: Task-Based Assistance for Software-Enabled Biomedical Devices
NRI:针对软件支持的生物医学设备的基于任务的援助
  • 批准号:
    1637764
  • 财政年份:
    2016
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
NRI: Autonomous Synthesis of Haptic Languages
NRI:触觉语言的自主合成
  • 批准号:
    1426961
  • 财政年份:
    2014
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
  • 批准号:
    1334609
  • 财政年份:
    2013
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Mutually Stabilized Correction in Physical Demonstration
CPS:协同:协作研究:物理演示中的相互稳定校正
  • 批准号:
    1329891
  • 财政年份:
    2013
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Physical Design and Feedback Control of Hybrid Mechanical Systems
混合机械系统的物理设计和反馈控制
  • 批准号:
    1200321
  • 财政年份:
    2012
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
RI: Small: Hierarchical Planning, Estimation, and Control for Hybrid Mechanical Systems
RI:小型:混合机械系统的分层规划、估计和控制
  • 批准号:
    1018167
  • 财政年份:
    2010
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
CAREER: Planning and Control for Overconstrained Mechanisms
职业:过度约束机制的规划和控制
  • 批准号:
    0951688
  • 财政年份:
    2009
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 41.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了