Collaborative Proposal: MSB-ENSA: The Near-term Ecological Forecasting Initiative

合作提案:MSB-ENSA:近期生态预报倡议

基本信息

  • 批准号:
    1638575
  • 负责人:
  • 金额:
    $ 55.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Living systems are changing worldwide and critical decisions that affect their health and sustainability are being made every day. In the face of climate change and other environmental challenges, society can no longer rely solely on past experience to understand and manage the living world. This award asks the question, ?What would it take to forecast ecological processes the same way we forecast the weather?? This project will development an operational ecological forecasting capability similar to weather forecasting that uses an iterative cycle between making forecasts, performing analyses, and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for building a forecast capacity, and also a crucial part of any decision making under high uncertainty. In addition to making ecology more relevant to management, near-term forecasts routinely compare specific, quantitative predictions to new data, which is one of the strongest tests of any scientific theory. This project will generate near-term forecasts that leverage ecological data collected by the National Ecological Observatory Network and spanning a wide range of themes: leaf phenology, land carbon and energy fluxes, tick-borne disease incidence, small-mammal populations, aquatic productivity, and soil microbial diversity and function. This broad, comparative approach will be used to address cross-cutting questions about the nature of predictability in ecology and develop an overarching body of forecasting theory and methods. The Near-term Ecological Forecasting Initiative (NEFI) will advance ecological knowledge at three levels: (1) overarching across-theme hypotheses about the predictability of ecological systems; (2) pressing within-theme questions about what drives process and predictability; and (3) advancing the tools and techniques that will enable an iterative approach to quantitative hypothesis testing. The overarching hypotheses of this project are that: (1) ecological predictability is more driven by processes error than initial condition error; (2) there are consistent patterns in the sources of uncertainty across themes; (3) across themes, spatial and temporal autocorrelation are positively correlated; and (4) spatial and temporal autocorrelation are positively correlated with limits of predictability. Overall, the answers to these questions address to what extent there are general patterns to ecological predictability, which would advance both our basic understanding of ecological processes and constrain the practical problem of making forecasts.The expected outcomes of NEFI are to: (1) Disseminate data products and predictions that benefit society; (2) Develop new tools and cyberinfrastructure that enhances research and education; and (3) to promote teaching, training, and learning. Specific NEFI forecasts, such as tick-borne disease risk, aquatic blooms, carbon sequestration, and leaf phenology, are of direct relevance to society. Forecasts will be made available via open cyberinfrastructure that disseminates forecasts to the public and allows other ecologists to contribute new forecasts. To produce these forecasts, NEFI will develop an open-source statistical package, ecoforecastR, which will advance the tools and techniques beyond what is currently used by the community. Finally, in addition to the graduate students directly mentored through the project, NEFI will run an annual summer course on ecological forecasting that will train the next generation of ecologists.
生命系统在全球范围内不断变化,每天都在做出影响其健康和可持续性的关键决策。面对气候变化和其他环境挑战,社会不能再仅仅依靠过去的经验来理解和管理生物世界。这个奖项提出了一个问题,?如何才能像预测天气一样预测生态过程?该项目将开发一种类似于天气预报的业务生态预报能力,在进行预报、进行分析和根据新证据更新预测之间使用迭代循环。这种获得反馈、积累经验、修正模型和方法的迭代过程对于建立预测能力至关重要,也是高度不确定性下任何决策的关键部分。除了使生态学与管理更加相关外,近期预测还经常将具体的定量预测与新数据进行比较,这是对任何科学理论的最强有力的检验之一。该项目将利用国家生态观测站网络收集的生态数据进行近期预测,涵盖广泛的主题:叶物候、土地碳和能量通量、蜱传疾病发病率、小型哺乳动物种群、水产生产力以及土壤微生物多样性和功能。这种广泛的,比较的方法将被用来解决生态学的可预测性的性质,并制定一个总体预测理论和方法的交叉问题。近期生态预测倡议(NEFI)将在三个层面推进生态知识:(1)关于生态系统可预测性的跨主题假设;(2)关于驱动过程和可预测性的紧迫主题内问题;(3)推进工具和技术,使迭代方法能够进行定量假设检验。该项目的总体假设是:(1)生态可预测性更多地由过程误差而不是初始条件误差驱动;(2)跨主题的不确定性来源具有一致的模式;(3)跨主题,空间和时间自相关性呈正相关;(4)空间和时间自相关性与可预测性的极限呈正相关。总体而言,这些问题的答案解决了在何种程度上存在生态可预测性的一般模式,这将促进我们对生态过程的基本理解,并限制预测的实际问题。NEFI的预期成果是:(1)传播有益于社会的数据产品和预测;(2)开发新的工具和网络基础设施,以加强研究和教育;(3)开发新的生态系统。(3)促进教学、培训和学习。具体的NEFI预测,如蜱传疾病风险,水生水华,碳固存和叶物候,与社会直接相关。预测将通过开放的网络基础设施提供,该基础设施将预测传播给公众,并允许其他生态学家提供新的预测。为了制作这些预测,NEFI将开发一个开源的统计软件包,ecoforecastR,这将推动社区目前使用的工具和技术的发展。最后,除了通过该项目直接指导的研究生外,NEFI还将举办一个关于生态预测的年度夏季课程,以培训下一代生态学家。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global imprint of mycorrhizal fungi on whole-plant nutrient economics
A Statistical Model for Estimating Midday NDVI from the Geostationary Operational Environmental Satellite (GOES) 16 and 17
从地球静止运行环境卫星 (GOES) 16 和 17 估算正午 NDVI 的统计模型
  • DOI:
    10.3390/rs11212507
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wheeler, Kathryn I.;Dietze, Michael C.
  • 通讯作者:
    Dietze, Michael C.
Prediction in ecology: a first-principles framework
  • DOI:
    10.1002/eap.1589
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dietze, Michael C.
  • 通讯作者:
    Dietze, Michael C.
Iterative near-term ecological forecasting: Needs, opportunities, and challenges
Spatial vs. temporal controls over soil fungal community similarity at continental and global scales
  • DOI:
    10.1038/s41396-019-0420-1
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Averill, Colin;Cates, LeAnna L.;Bhatnagar, Jennifer M.
  • 通讯作者:
    Bhatnagar, Jennifer M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shannon LaDeau其他文献

Shannon LaDeau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shannon LaDeau', 18)}}的其他基金

CNH: Urban Disamenities and Pests: Coupled Dynamics of Urban Mosquito Ecology and Human Systems Across Socioeconomically Diverse Communities
CNH:城市疾病与害虫:社会经济多元化社区的城市蚊子生态与人类系统的耦合动态
  • 批准号:
    1211797
  • 财政年份:
    2012
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Trophic regulation and support of mosquitoes: An ecosystem approach to pest emergence along an urban gradient
蚊子的营养调节和支持:沿城市梯度防治害虫出现的生态系统方法
  • 批准号:
    1050611
  • 财政年份:
    2011
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Bioinformatics Starter Grant: Hierarchical Bayesian modeling to investigate climate and land-use drivers in the multi-species ecology of West Nile virus.
生物信息学入门资助:分层贝叶斯模型,用于研究西尼罗河病毒多物种生态中的气候和土地利用驱动因素。
  • 批准号:
    0903768
  • 财政年份:
    2009
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Biological Informatics FY 2006
生物信息学博士后研究奖学金 2006 财年
  • 批准号:
    0630745
  • 财政年份:
    2006
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Proposal: MSB-FRA: A macrosystems ecology framework for continental-scale prediction and understanding of lakes
合作提案:MSB-FRA:用于大陆尺度预测和湖泊理解的宏观系统生态学框架
  • 批准号:
    2306364
  • 财政年份:
    2022
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    2207680
  • 财政年份:
    2022
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    2150626
  • 财政年份:
    2021
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-ENSA: Forest function from genes to canopies: disentangling the fine scale spatio-temporal variation in gene expression and tree growth
合作提案:MSB-ENSA:从基因到冠层的森林功能:解开基因表达和树木生长的精细尺度时空变化
  • 批准号:
    2141836
  • 财政年份:
    2021
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: MSB-FRA: Causes, consequences, and cross-scale linkages of environment-driven phenological mismatch across three trophic levels
合作提案:MSB-FRA:三个营养级环境驱动物候不匹配的原因、后果和跨尺度联系
  • 批准号:
    2033263
  • 财政年份:
    2020
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    1802855
  • 财政年份:
    2019
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    1802872
  • 财政年份:
    2019
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    1802811
  • 财政年份:
    2019
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity and Communities in Streams
合作提案:MSB-FRA:扩展河流中的气候、连通性和社区
  • 批准号:
    1802895
  • 财政年份:
    2019
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-FRA: Scaling Climate, Connectivity, and Communities in Streams
合作提案:MSB-FRA:扩展流中的气候、连通性和社区
  • 批准号:
    1802714
  • 财政年份:
    2019
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了