Collaborative Research: Multiscale Investigation of Thixotropy in Soft Clays
合作研究:软粘土触变性的多尺度研究
基本信息
- 批准号:1640313
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thixotropy is a material property that describes how a substance can "thicken" over time. Simple examples of thixotropic materials available in the house are in the kitchen (ketchup), the bathroom (toothpaste), the art studio (paints), and the toy box (silly putty). Each of these materials if left untouched will become stiffer, but when the material is worked (or used) it will move more easily. This concept also is used to describe the behavior of some naturally occurring clay soils. Scientists and engineers have long observed this phenomenon in clays, but only a theorized or hypothesized explanation has been presented to date to explain the underlying mechanisms. The work in this research project aims to examine and simulate the clay particle-scale development of thixotropy under various environmental conditions (time, water chemistry, and temperature) and at different size scales. This innovative multiscale approach to understanding the mechanisms of thixotropy serves to advance the NSF mission of promoting the progress of science by filling a void of information utilizing recent advances in theory, experimentation, and computing. The new knowledge gained in this work will aid in the design and construction of engineering systems involving soft clays, such as deep pile foundations, offshore pipelines, wind farm foundations, disposal of dredged materials, drilling mud stability, and seabed clay acoustic properties, among others. The project also includes a significant outreach program to help attract under-represented minority students to STEM disciplines through publications and K-12 school activities and demonstrations.Thixotropy is a fundamental soil behavior mechanism that governs multiple time-dependent engineering properties of soft clays (e.g., the evolution of stiffness, strength, and sensitivity over time). While significant understanding of thixotropy of colloid systems has been achieved since the initiation of the field of thixotropy in the early 1920s, current knowledge on soil thixotropy is still based primarily on some pioneering work performed in and prior to the 1960s and, since then, new developments have been scarce and fragmental. Such a paucity of new findings and the disparity in thixotropy research and advancement between colloid science and soil mechanics provide an impetus to this research. Therefore, this collaborative project that integrates multiscale experimental and computational efforts is to study soft clay thixotropy. The overall goal of the project is to create the enabling knowledge on the macroscale mechanical and microscale structural mechanisms of soft clay thixotropy and hence to append some new time-dependent soil behavior to the geotechnical knowledge base. To achieve this goal, a congruent and comprehensive research program consisting of three primary thrusts is designed with synergistic collaboration among the three investigators from UMass Amherst and Drexel University with complementary expertise in macroscale mechanical testing, microscale fabric imaging, quantitative characterization of particle orientations, and coarse-grained molecular dynamics simulations. The intellectual merit of the project stems from three aspects: (1) the geotechnical knowledge base on soil thixotropy will be expanded with new understanding, particularly the effects of physico-chemical factors such as temperature and porewater chemistry; (2) both the macroscale mechanical and microscale structural mechanisms of thixotropic hardening of soft clays will be uncovered via multiscale experimental and computational research; and (3) the linkage between quantitative time-dependent clay fabric evolution and macroscale thixotropic processes will be developed. Because soil thixotropy plays an important role in many engineering problems, the project also can generate significant practical impacts to geotechnical engineering, particularly the design and construction of engineering systems involving soft clays. Examples include evaluation of pile and suction caisson setup, design of wind farm foundations, and disposal of dredged materials, among others. Moreover, the multiscale investigation methodology developed through this project can be generalized to other more complex soil research topics and can also serve as a generic approach for other basic research queries.
触变性是一种材料性质,描述了一种物质如何随着时间的推移而“膨胀”。 触变材料的简单例子是在家里的厨房(番茄酱),浴室(牙膏),艺术工作室(油漆)和玩具盒(愚蠢的腻子)。 这些材料中的每一种如果不被触动,都会变得更硬,但是当材料被加工(或使用)时,它会更容易移动。 这个概念也被用来描述一些天然粘土的行为。 科学家和工程师长期以来一直在粘土中观察到这种现象,但迄今为止,只有理论或假设的解释才能解释潜在的机制。 本研究项目的工作旨在研究和模拟不同环境条件(时间,水化学和温度)和不同尺寸尺度下的粘土颗粒尺度触变性的发展。 这种创新的多尺度方法来理解触变性的机制,有助于推进NSF的使命,即通过利用理论、实验和计算方面的最新进展来填补信息的空白,从而促进科学的进步。 在这项工作中获得的新知识将有助于涉及软粘土的工程系统的设计和施工,例如深桩基础,海上管道,风电场基础,疏浚物的处理,钻井泥浆稳定性和海底粘土声学特性等。 该项目还包括一个重要的外展计划,通过出版物和K-12学校活动和演示,帮助吸引代表性不足的少数民族学生到STEM学科。触变性是一种基本的土壤行为机制,它控制着软粘土的多种时间依赖性工程性质(例如,刚度、强度和灵敏度随时间的演变)。 虽然自20世纪20年代初触变性领域开始以来,人们对胶体体系的触变性有了很大的了解,但目前对土壤触变性的认识仍然主要基于20世纪60年代及之前的一些开创性工作,从那时起,新的发展就很少而且不完整。 这种新发现的缺乏以及胶体科学和土力学在触变性研究和进展方面的差距为这一研究提供了动力。 因此,本合作计画结合多尺度实验与计算成果,研究软黏土的触变性。 该项目的总体目标是创建有关软粘土触变性的宏观尺度力学和微观尺度结构机制的知识,从而将一些新的与时间相关的土壤行为添加到岩土工程知识库中。 为了实现这一目标,一个一致的和全面的研究计划,包括三个主要的推力设计与三个研究人员之间的协同合作,从马萨诸塞州阿默斯特大学和德雷克塞尔大学与互补的专业知识,在宏观力学测试,微观织物成像,颗粒取向的定量表征,和粗粒度的分子动力学模拟。 该项目的学术价值体现在三个方面:(1)对土的触变性有了新的认识,特别是对温度和孔隙水化学等物理化学因素的影响有了新的认识;(2)通过多尺度试验和计算研究,揭示了软粘土触变性硬化的宏观力学和微观结构机理;以及(3)定量的时间相关的粘土组构演化和宏观触变过程之间的联系将得到发展。 由于土的触变性在许多工程问题中起着重要的作用,因此工程也会对岩土工程,特别是涉及软粘土的工程系统的设计和施工产生重大的实际影响。 实例包括桩和吸力沉箱设置的评估、风电场基础的设计以及疏浚物的处理等。 此外,通过该项目开发的多尺度调查方法可以推广到其他更复杂的土壤研究课题,也可以作为其他基础研究查询的通用方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt Sjoblom其他文献
Kurt Sjoblom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2331017 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials
CDS
- 批准号:
2245107 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant