Collaborative Research: Ultra Fine Particle Deposition onto Vegetated Surfaces Situated on Complex Topography: From Leaf to Landscape

合作研究:复杂地形上植被表面的超细颗粒沉积:从树叶到景观

基本信息

  • 批准号:
    1644375
  • 负责人:
  • 金额:
    $ 25.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-15 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Vegetated surfaces produce and can serve as a sink for ultrafine particles (UFP) that can affect local climate and air-quality. This work examines the interaction of the forest canopy with the UFP under realistic conditions to develop methods to predict the efficacy of forests as UFP sinks. The findings inform how vegetation effects ecosystem services, climate and air quality. It also provide and opportunity to scrub pollution from rapidly growing nano-particle products in urban areas.Forests produce particles that play an important but ill-understood role in the radiative balance and composition of the atmosphere. The proposal focuses on the quantification of Ultra-fine particles (UFP) fluxes from vegetation canopies that are controlled by complex dynamical and reactive processes using first principles. Their up scaling method resolves (1) the effects of leaf morphology (2) flows within the a canopy and on landscape scales and (3) effects of large scale topography. The project will use laboratory and field experiments over a range of scales to understand fundamental questions such as (1) How does foliage size, shape and structure impact UFP collection? (2) How does the UFP deposition velocity vary within the canopy? (3) Can we reliably upscale these UFP fluxes for complex topography? This project should enable the development of next generation canopy models to treat couplings and chemical feedbacks between ecosystems and the atmosphere.
植被覆盖的表面会产生超细颗粒(UFP),并可能成为影响当地气候和空气质量的汇。这项工作在现实条件下研究了森林冠层与UFP的相互作用,以开发预测森林作为UFP汇的功效的方法。这些发现揭示了植被如何影响生态系统服务、气候和空气质量。它也为城市地区快速增长的纳米颗粒产品的污染提供了一个机会。森林产生的颗粒在大气的辐射平衡和组成中起着重要但不为人所知的作用。该提案的重点是利用第一性原理对植被冠层中受复杂动力学和反应过程控制的超细颗粒(UFP)通量进行量化。他们的上尺度方法解决了(1)叶片形态的影响;(2)冠层内和景观尺度上的流动;(3)大尺度地形的影响。该项目将使用实验室和现场实验在一系列尺度来理解基本问题,如:(1)叶的大小,形状和结构如何影响UFP收集?(2) UFP沉积速度在冠层内的变化规律?(3)对于复杂地形,我们能否可靠地提高UFP通量?该项目应使下一代冠层模型的发展能够处理生态系统与大气之间的耦合和化学反馈。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Gentle Topography on Forest‐Atmosphere Gas Exchanges and Implications for Eddy‐Covariance Measurements
Effects of topography on in‐canopy transport of gases emitted within dense forests
Effects of leaf area index and density on ultrafine particle deposition onto forest canopies: A LES study
  • DOI:
    10.1016/j.atmosenv.2018.06.048
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xinlu Lin;M. Chamecki;G. Katul;Xiping Yu
  • 通讯作者:
    Xinlu Lin;M. Chamecki;G. Katul;Xiping Yu
Effects of Vegetation and Topography on the Boundary Layer Structure above the Amazon Forest
  • DOI:
    10.1175/jas-d-20-0063.1
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chamecki, Marcelo;Freire, Livia S.;de Araujo, Alessandro C.
  • 通讯作者:
    de Araujo, Alessandro C.
Critical flux Richardson number for Kolmogorov turbulence enabled by TKE transport
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcelo Chamecki其他文献

Marcelo Chamecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcelo Chamecki', 18)}}的其他基金

Collaborative Research: From Turbulence to Weather and Climate: Unraveling the Multi-scale Nature of Dust and Sand Transport in the Atmospheric Boundary Layer
合作研究:从湍流到天气和气候:揭示大气边界层中沙尘输送的多尺度性质
  • 批准号:
    1647173
  • 财政年份:
    2016
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: From Turbulence to Weather and Climate: Unraveling the Multi-scale Nature of Dust and Sand Transport in the Atmospheric Boundary Layer
合作研究:从湍流到天气和气候:揭示大气边界层中沙尘输送的多尺度性质
  • 批准号:
    1358593
  • 财政年份:
    2014
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Dispersion of Particles Within and Above Plant Canopies
合作研究:植物冠层内部和上方的颗粒分散
  • 批准号:
    1005363
  • 财政年份:
    2011
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Measurements and Modeling of Subgrid-scale Turbulence in the Atmospheric Surface Layer
合作研究:大气表层亚网格尺度湍流的测量和建模
  • 批准号:
    0638385
  • 财政年份:
    2007
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235856
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultra-High Resolution Paleostreamflow in Southeast Asia--Proxy/Model Comparison
合作研究:东南亚超高分辨率古水流——代理/模型比较
  • 批准号:
    2302669
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327572
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329014
  • 财政年份:
    2023
  • 资助金额:
    $ 25.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了