EAGER: Theoretic Structures of High Dimensional Data Decomposition

EAGER:高维数据分解的理论结构

基本信息

  • 批准号:
    1644588
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This project aims at developing an information theoretic view of the problems of dimension reduction and feature selection. The problem of feature selection is a core issue in processing high dimensional data. It is difficult from an information processing point-of-view mainly because when reducing high dimensional data into lower dimensional feature space, it is in general inevitable to incur irreversible information losses. In this work, the problem is formulated as a general lossy information processing problem. The solutions to this problem is efficient algorithms that can be used to choose informative features that are relevant universally to a family of inference tasks.The goal of a general theoretic framework to this problem is to develop systematic understanding and uniform performance comparisons to the existing wide variety of practical solutions. The main technical merit lies in a new operational meaning of information metrics, which connects a large body of research on information theory to the challenges of high dimensional data analytics. A new geometric analysis approach is used in this work, which helps to visualize the problem of feature selections, and link the problem to the well-studied concept of the Hirschfeld-Gebelein-Renyi maximal correlation.The key advantage of the proposed approach is its generality. It can be applied to any type of data, incorporate prior knowledge and side information, connect multiple platforms, follow computation and storage constraints, adapt to time-variations, etc., all based on the same theoretic principle. It is envisioned that such universality would lead to architectural changes in the area of data analysis, with a universal interface that separates the task of a data scientist, in information extraction, from the task of a specialist with domain knowledge, in collecting the data, providing the models, and interpreting the result.
该项目旨在发展降维和特征选择问题的信息论观点。特征选择问题是处理高维数据的核心问题。从信息处理的角度来看,这很困难,主要是因为当将高维数据减少到较低维特征空间时,通常不可避免地会导致不可逆的信息损失。在这项工作中,该问题被表述为一般有损信息处理问题。这个问题的解决方案是有效的算法,可以用来选择与一系列推理任务普遍相关的信息特征。这个问题的通用理论框架的目标是发展系统的理解和与现有的各种实际解决方案的统一性能比较。主要技术优点在于信息度量的新操作意义,它将信息论的大量研究与高维数据分析的挑战联系起来。这项工作中使用了一种新的几何分析方法,这有助于可视化特征选择问题,并将问题与经过深入研究的 Hirschfeld-Gebelein-Renyi 最大相关性概念联系起来。该方法的主要优点是其通用性。它可以应用于任何类型的数据,结合先验知识和辅助信息,连接多个平台,遵循计算和存储约束,适应时间变化等,所有这些都基于相同的理论原理。预计这种通用性将导致数据分析领域的架构变化,通过通用接口将数据科学家的信息提取任务与具有领域知识的专家收集数据、提供模型和解释结果的任务分开。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizhong Zheng其他文献

On Error Probability for Wideband MIMO Channels
宽带 MIMO 信道的错误概率
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ray;M. Muriel;Lizhong Zheng
  • 通讯作者:
    Lizhong Zheng
Learning for Integer-Constrained Optimization through Neural Networks with Limited Training
通过有限训练的神经网络学习整数约束优化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhou Zhou;Shashank Jere;Lizhong Zheng;Lingjia Liu
  • 通讯作者:
    Lingjia Liu
The number of degrees of freedom in noncoherent block fading multiple antenna channel
非相干块衰落多天线信道的自由度数
Interference-Aware Constellation Design for Z-Interference Channels with Imperfect CSI
具有不完美 CSI 的 Z 干扰通道的干扰感知星座设计
Polynomial spectral decomposition of conditional expectation operators
条件期望算子的多项式谱分解

Lizhong Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizhong Zheng', 18)}}的其他基金

Collaborative Research: MLWiNS: Deep Neural Networks Meet Physical Layer Communications -- Learning with Knowledge of Structure
合作研究:MLWiNS:深度神经网络满足物理层通信——利用结构知识进行学习
  • 批准号:
    2002908
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CCSS: Small: Universal Feature Selection in Integrated Monitoring of Large Networks
CCSS:小型:大型网络综合监控中的通用特征选择
  • 批准号:
    1711027
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CIF: SMALL: The Linear Information Coupling Problem
CIF:小:线性信息耦合问题
  • 批准号:
    1216476
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CIF: Travel Grant for the IEEE International Symposium on Information Theory, July 1 to 6, 2012
CIF:2012 年 7 月 1 日至 6 日 IEEE 国际信息论研讨会差旅补助金
  • 批准号:
    1244885
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research:Understanding and Managing Interference in Communications Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
  • 批准号:
    0904305
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Information Theory with Directions: Geometric Structure and Coordinates on the Space of Probability Distributions
有方向的信息论:概率分布空间上的几何结构和坐标
  • 批准号:
    0830100
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Towards Unified Theory of Wireless Communications
职业:迈向无线通信统一理论
  • 批准号:
    0347395
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Model-theoretic dividing lines in the context of finite structures
有限结构背景下的模型理论分界线
  • 批准号:
    2882659
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
CAREER: Information Theoretic Methods in Data Structures
职业:数据结构中的信息论方法
  • 批准号:
    1844887
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Algebraic and category-theoretic structures in low-dimensional topology
低维拓扑中的代数和范畴论结构
  • 批准号:
    18H01119
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Aspects of computability-theoretic structures as topological invariants
作为拓扑不变量的可计算性理论结构的方面
  • 批准号:
    17H06738
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Low-dimensional topology and algebraic and category-theoretic structures
低维拓扑以及代数和范畴论结构
  • 批准号:
    15K04873
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graph-Theoretic and Algorithmic Techniques for Higher-Order Structures in Online Social Networks
在线社交网络中高阶结构的图论和算法技术
  • 批准号:
    467111-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Research on representation theoretic structures of unknot detectors
不结点探测器的表示理论结构研究
  • 批准号:
    22740048
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Graph theoretic data structures and algorithms
图论数据结构和算法
  • 批准号:
    390928-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Study of Rightward Movement Structures in Discourse : Relevance-theoretic and Cognitive Approach
话语中右移结构的研究:关联理论和认知方法
  • 批准号:
    17520322
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representing Game-theoretic Structures in the Situation Calculus
表示情境演算中的博弈论结构
  • 批准号:
    318193-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了