CAREER: Ultrafast Time/Frequency Domain Coherent Anti-Stokes Raman Spectroscopy for Combustion and Plasma Systems

职业:用于燃烧和等离子体系统的超快时域/频域相干反斯托克斯拉曼光谱

基本信息

  • 批准号:
    1645542
  • 负责人:
  • 金额:
    $ 21.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Intellectual Merit: Optimization of combustion and plasma systems is important for a wide range of applications, from clean power generation to materials processing. The objective of this research is to significantly enhance the knowledge and understanding of non-equilibrium gas-phase chemistry in novel combustion and plasma systems through the development and use of a new laser spectroscopic approach known as ultrafast time/frequency domain coherent anti-Stokes Raman spectroscopy. This technique has the potential to overcome many of the shortcomings of conventional laser diagnostic approaches by enabling simultaneous characterization of temperature- and pressure-dependent energy transfer processes on a time scale that can resolve molecular collisions, vibrational and rotational energy levels within single and multiple species, as well as resonant and non-resonant time dynamics. Preliminary data indicate that these processes can be studied at measurement rates that are at least one hundred times faster than previous spectroscopic approaches, allowing transients in many practical devices to be resolved with unprecedented detail. The development and validation of a time-dependent theoretical model to capture the fundamental photophysics of ultrafast laser-matter interactions will take place in parallel with, and in many cases, guide the development of experimental innovations. Broader Impact: The broad impact of this research will be achieved, in part, by advancing the detailed understanding of gas-phase chemistry that is important for meeting current and future challenges in clean energy and manufacturing. Applications that benefit society include the development of chemical and molecular dynamics simulations of surface (or gas-solid) chemistry, high-pressure coal/biomass gasification, emissions reduction in combustion devices, catalytic upgrading and utilization of alternative fuels, electric discharges for boundary flow control, plasma-assisted ignition/combustion, plasma synthesis of nanotubes, and plasma deposition of silicon alloys for solar energy conversion. Strategies such as homogeneous charge compression ignition and oxy-fuel combustion, for example, invoke unconventional operating conditions, and experimental methods are required to help develop and validate models of chemical kinetics and energy transfer processes for a range of temperatures and pressures. The scientific knowledge gained through this work will be disseminated broadly through scholarly publications and collaboration with academia, industry, and national laboratories. The integrated research and education plan includes expansion of joint research and education activities through the Program for Women in Science and Engineering, as well as NSF sponsored Research Experiences for Undergraduates and Research Experiences for Teachers. Graduate students will gain experience in teaching and mentoring undergraduate students both in the laboratory and classroom, as well as inspiring k-12 students through a new program they have already piloted called "Engineering at the Speed of Light." The knowledge gained through this work will also be used for an advanced combustion course attended by graduate and undergraduate students, as well as expansion of curricula through the establishment of an Energy Systems minor in the College of Engineering.
智力优势:燃烧和等离子体系统的优化对于从清洁发电到材料加工的广泛应用非常重要。 本研究的目的是通过开发和使用一种新的激光光谱方法,称为超快时域/频域相干反斯托克斯拉曼光谱,显着提高知识和理解的非平衡气相化学在新型燃烧和等离子体系统。 这种技术有可能克服许多传统的激光诊断方法的缺点,使温度和压力相关的能量转移过程的时间尺度上,可以解决分子碰撞,振动和旋转能级内的单一和多个物种,以及共振和非共振时间动态的同时表征。 初步数据表明,这些过程可以研究的测量速率至少是以前的光谱方法的100倍,使许多实际设备中的瞬态解决前所未有的细节。 开发和验证一个依赖于时间的理论模型,以捕捉超快激光-物质相互作用的基本物理学,将与实验创新的发展并行进行,并在许多情况下指导实验创新的发展。 更广泛的影响:这项研究的广泛影响将在一定程度上通过推进对气相化学的详细了解来实现,这对于应对清洁能源和制造业当前和未来的挑战至关重要。 有益于社会的应用包括开发表面(或气固)化学的化学和分子动力学模拟、高压煤/生物质气化、燃烧装置的减排、催化升级和替代燃料的利用、用于边界流控制的放电、等离子体辅助点火/燃烧、纳米管的等离子体合成以及用于太阳能转换的硅合金的等离子体沉积。例如,均质充量压缩点火和氧燃料燃烧等策略会引发非常规操作条件,需要实验方法来帮助开发和验证温度和压力范围内的化学动力学和能量传递过程模型。 通过这项工作获得的科学知识将通过学术出版物以及与学术界、工业界和国家实验室的合作广泛传播。综合研究和教育计划包括通过科学和工程领域妇女方案以及国家科学基金会赞助的本科生研究经验和教师研究经验扩大联合研究和教育活动。 研究生将获得在实验室和课堂上教授和指导本科生的经验,并通过他们已经试行的名为“光速工程”的新项目激励K-12学生。“通过这项工作获得的知识也将用于研究生和本科生参加的高级燃烧课程,以及通过在工程学院建立能源系统未成年人来扩展课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terrence Meyer其他文献

Acceleration of Burned gas to Supersonic in a Throatless Rotating Detonation Engine
无喉式旋转爆震发动机中燃烧气体加速至超音速
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kotaro Nakata;Kosei Ota;Shiro Ito;Kazuki Ishihara;Keisuke Goto;Noboru Itouyama;Hiroaki Watanabe;Akira Kawasaki;Ken Matsuoka;Jiro Kasahara;Akiko Matsuo;Ikkoh Funaki;Kazuyuki Higashino;James Braun;Terrence Meyer;Guillermo Paniagua
  • 通讯作者:
    Guillermo Paniagua

Terrence Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terrence Meyer', 18)}}的其他基金

Support for 2019 Laser Diagnostics in Energy and Combustion Science Gordon Research Conference and Gordon Research Seminar
支持2019能源与燃烧科学激光诊断戈登研究会议和戈登研究研讨会
  • 批准号:
    1851608
  • 财政年份:
    2019
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Collaborative Research: High-speed Imaging Guided Large Eddy Simulation (LES) Model Development for Turbulent Flames
合作研究:高速成像引导的湍流火焰大涡模拟 (LES) 模型开发
  • 批准号:
    1645544
  • 财政年份:
    2015
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Collaborative Research: High-speed Imaging Guided Large Eddy Simulation (LES) Model Development for Turbulent Flames
合作研究:高速成像引导的湍流火焰大涡模拟 (LES) 模型开发
  • 批准号:
    1403969
  • 财政年份:
    2014
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Time/Frequency Domain Coherent Anti-Stokes Raman Spectroscopy for Combustion and Plasma Systems
职业:用于燃烧和等离子体系统的超快时域/频域相干反斯托克斯拉曼光谱
  • 批准号:
    1056006
  • 财政年份:
    2011
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Research Grant
Characterizing Local Chemical Order in Multi-Principal Element Alloys by Femtosecond Time-Resolved Ultrafast Electron Diffraction
通过飞秒时间分辨超快电子衍射表征多主元素合金中的局部化学顺序
  • 批准号:
    2327777
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Ultrafast dynamics of chiral molecules investigated by time-resolved momentum circular dichroism spectroscopy
通过时间分辨动量圆二色光谱研究手性分子的超快动力学
  • 批准号:
    23H01929
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: CAS: Broadband UV-NIR Ultrafast Photochemistry Imaged in Space and Time
职业:CAS:宽带 UV-NIR 超快光化学在时空成像
  • 批准号:
    2239539
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Exploring ultrafast space-time imaging principle using temporal-modes of lights
利用光的时间模式探索超快时空成像原理
  • 批准号:
    23K17907
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
R-Matrix with Time-Dependence Method for Strong-field, Ultrafast Light-Matter Computations
R 矩阵与时间相关方法用于强场、超快光物质计算
  • 批准号:
    576432-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
  • 批准号:
    22K14653
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of compressed ultrafast microscopy for real-time multi-scale neuroimaging
开发用于实时多尺度神经成像的压缩超快显微镜
  • 批准号:
    RGPIN-2017-05959
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast time- and frequency-resolved imaging based on FT spectroscopy
基于 FT 光谱的超快时间和频率分辨成像
  • 批准号:
    22K19015
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Tuneable Femtosecond Laser Sources for Time-Resolved Ultrafast Spectroscopy
用于时间分辨超快光谱的可调谐飞秒激光源
  • 批准号:
    RTI-2022-00316
  • 财政年份:
    2021
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了