EAGER: Preferences in Repeated Choices

EAGER:重复选择中的偏好

基本信息

项目摘要

Computational models of preferences are important for recommendation and decision-support systems, with applications including long-term planners, smart homes, and health-care monitors. Because there is a trade-off between the expressivity of preference representations and the ease of reasoning with them, most personalized preference-based systems rely on either statistical models of similar individuals, or very simple models of one individual?s preferences. We propose to work with conditional preference models, which can represent more complex preferences. Our work will be to develop better algorithms for reasoning about preferences over complex outcomes or scenarios, given such models, and also to extend the model to be able to reason about repeated choices over time. In addition, the PI will use preference modeling software in her outreach to schools, colleges, and the general public to show ways that computers can model and reason about preferences. The PI has a record of supporting a diverse group of students, including students from the LGBTQA community, students with learning disabilities, women, and people of color. Thus, the broader impacts include outreach and a software package, which will be publicly available, for outreach about AI and preference handling, contributions to the infrastructure of preference reasoning research, and support of diversity in computer science. The first part of our proposal is to work algorithms for deciding, given a conditional preference network (CP-net) and two outcomes, which outcome is more preferred. We will organize a competition, perhaps based on the ICAPS International Planning Competitions, for these algorithms. Secondly, we will explore two models of temporal preferences: Temporal Conditional Choice Networks (TCC-nets) and hidden Markov models (HMMs). We will develop an iPhone app, CommuteRoute, to collect individuals? choices over time of routes between home and work. This data, stored as feature vectors, will (in future work) allow us to test algorithms for learning and reasoning with TCC-nets, and comparing those algorithms to extant HMM algorithms.
偏好的计算模型对于推荐和决策支持系统非常重要,其应用包括长期规划者、智能家居和医疗监测器。 由于偏好表达的表达性和推理的容易性之间存在权衡,因此大多数个性化的基于偏好的系统依赖于相似个体的统计模型,或者一个个体的非常简单的模型。的偏好。 我们建议使用条件偏好模型,它可以表示更复杂的偏好。 我们的工作将是开发更好的算法来推理复杂结果或场景的偏好,并扩展模型,以便能够随着时间的推移对重复的选择进行推理。 此外,PI将使用偏好建模软件在她的推广到学校,大学和公众展示计算机可以建模和推理偏好的方式。 PI有支持不同群体的学生,包括来自LGBTQA社区的学生,有学习障碍的学生,妇女和有色人种的记录。因此,更广泛的影响包括推广和软件包,这将是公开的,用于推广人工智能和偏好处理,对偏好推理研究的基础设施的贡献,以及对计算机科学多样性的支持。 我们的建议的第一部分是工作的算法来决定,给定一个条件偏好网络(CP-网)和两个结果,哪一个结果是更喜欢。 我们将为这些算法组织一个竞赛,也许是基于ICAPS国际规划竞赛。 其次,我们将探讨两个模型的时间偏好:时间条件选择网络(TCC-网)和隐马尔可夫模型(HALTH)。 我们将开发一个iPhone应用程序,通勤路线,收集个人?家庭和工作之间的路线选择。 这些数据存储为特征向量,将(在未来的工作中)允许我们使用TCC网络测试学习和推理的算法,并将这些算法与现有的HMM算法进行比较。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Complexity of Campaigning
竞选活动的复杂性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siler, Cory;Miles, Luke Harold;Goldsmith, Judy
  • 通讯作者:
    Goldsmith, Judy
Uniform Random Generation and Dominance Testing for CP-Nets
  • DOI:
    10.1613/jair.5455
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas E. Allen;J. Goldsmith;Hayden Elizabeth Justice;Nicholas Mattei;Kayla Raines
  • 通讯作者:
    Thomas E. Allen;J. Goldsmith;Hayden Elizabeth Justice;Nicholas Mattei;Kayla Raines
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Judith Goldsmith其他文献

Judith Goldsmith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Judith Goldsmith', 18)}}的其他基金

EAGER: Teaching Computer Ethics through Literature
EAGER:通过文学教授计算机伦理
  • 批准号:
    1646887
  • 财政年份:
    2016
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
AF:Conference: Algorithmic Decision Theory/LPNMR
AF:会议:算法决策理论/LPNMR
  • 批准号:
    1533002
  • 财政年份:
    2015
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research: Robust Preference Aggregation
ICES:小型:协作研究:稳健的偏好聚合
  • 批准号:
    1215985
  • 财政年份:
    2012
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
IJCAI 2011 Doctoral Consortium and International Experience
IJCAI 2011 博士联盟和国际经验
  • 批准号:
    1107011
  • 财政年份:
    2011
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: Broader Impacts for Research and Discovery Summit
协作研究:研究和发现峰会的更广泛影响
  • 批准号:
    1033485
  • 财政年份:
    2010
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
EAGER: Changing Minds, Changing Probabilities
EAGER:改变想法,改变概率
  • 批准号:
    1049360
  • 财政年份:
    2010
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
ITR: Decision-Theoretic Planning with Constraints
ITR:有约束的决策理论规划
  • 批准号:
    0325063
  • 财政年份:
    2003
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Theory Revision and Related Problems in Learning Theory
学习理论的理论修正及相关问题
  • 批准号:
    0100040
  • 财政年份:
    2001
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
U.S.-Germany Cooperative Research: Control in Stochastic Domains - Complexity and Solutions
美德合作研究:随机域控制 - 复杂性和解决方案
  • 批准号:
    9815352
  • 财政年份:
    1999
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CAREER ADVANCEMENT AWARD: The Complexity of Markov Decision Processes
职业发展奖:马尔可夫决策过程的复杂性
  • 批准号:
    9610348
  • 财政年份:
    1997
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似海外基金

選好(preferences)に着目した新たな口腔保健行動の行動変容モデルの構築
建立关注偏好的口腔健康行为新行为改变模型
  • 批准号:
    24K13244
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Drought and Climate Resilience of Smallholders in Afghanistan: Needs and Preferences Analysis
阿富汗小农的干旱和气候抵御能力:需求和偏好分析
  • 批准号:
    24K16366
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Militant Organization Preferences and Strategies for Reducing Postconflict Violence
RAPID:激进组织的偏好和减少冲突后暴力的策略
  • 批准号:
    2412014
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
  • 批准号:
    24K20238
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prosody's Impact on Early Social Preferences: An Infant-Robot Exploration
Prosody 对早期社会偏好的影响:婴儿机器人探索
  • 批准号:
    24K16785
  • 财政年份:
    2024
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluation of Japanese pediatric surgeon proficiency using the NCD, and investigation of patient preferences for a trade-off between travel distance and potential outcome improvement
使用 NCD 评估日本儿科外科医生的熟练程度,并调查患者偏好以权衡旅行距离和潜在的结果改善
  • 批准号:
    23K09596
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HIV prevention for underserved men who have sex with men: a community-based exploration of PrEP access needs and preferences
服务不足的男男性行为者的艾滋病毒预防:基于社区的 PrEP 获取需求和偏好探索
  • 批准号:
    487997
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Operating Grants
Temperature and thermogustatory preferences
温度和热味觉偏好
  • 批准号:
    10735227
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了