EAGER: Towards a Better Understanding of Group Privacy in Social Media Community Detection

EAGER:更好地理解社交媒体社区检测中的群体隐私

基本信息

  • 批准号:
    1649469
  • 负责人:
  • 金额:
    $ 15.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Much of human communication is now mediated by online social networks. Twitter, Facebook, and Youtube now compete for our collective attention in much the same way as television, radio, and newspapers did for previous generations. But contemporary online social media are qualitatively different from media of the past. Online communication leaves a record of who said what to whom, when, and on what topic. The development of new analytical tools offer the possibility to use these records to track popular on-line topics and to identify the demographics of groups contributing to these topics, including the geographic location of contributors, as well as their age, gender, and ethnicity. What is more, it is possible for ad hoc groups to coalesce around topics in real time. On the one hand, these data present a challenge for computer scientists to develop new tools that enable the tracking of these kinds of information. Success in this domain offers significant practical benefits in business, marketing, and politics. At the same time, however, the ability to track these kinds of information raise privacy concerns, both for individuals and for members of groups who can be identified by the emerging technology. In our research, computer scientists will develop tools that enable tracking of topics and group memberships, and communication researchers will identify the kinds of privacy concerns that people develop around these kinds of information, when, why, and with what consequences.The research described in this project builds on prior work on trend analysis and community extraction, seeking to advance research on two fronts: the efficient identification of ad hoc communities which focus on a popular topic, and the understanding of individual versus group privacy based on the identified communities. Although trend analysis is a burgeoning area of research in Computer Science, existing models focus on the correlation of only one dimension (e.g., location) with trending topics. This research represents a step forward by providing a more sophisticated and powerful tool that allows for the extraction of interesting and potentially useful trend patterns through Topic Based Community Identification. At the same time, this community identification may prompt new types of group privacy concerns that have not been researched in social science, which has mainly focused on individual rather than group privacy. This approach provides a unique opportunity to significantly impact scholarly understanding of the mechanisms and dynamics of individual and group privacy concern, especially with regard to ad-hoc, topic-based groups, and their effects on Social Media users' attitudes and behavior. If group-level privacy is a concern beyond individual privacy, then we expect to find that people will express group privacy concerns when a group they identify with is included in the tracking information, especially when topics are morally loaded, but independent of whether the individual participant is personally involved in the Twitter conversation. This has the potential to develop necessary and sufficient conditions for the emergence of group privacy concerns.
现在,人类的大部分交流都是通过在线社交网络进行的。Twitter、Facebook和YouTube现在争夺我们的集体关注,就像电视、广播和报纸对前几代人所做的那样。但当代在线社交媒体与过去的媒体有质的不同。在线交流留下了谁对谁说了什么的记录,什么时候说了什么,说了什么话题。新的分析工具的开发使人们有可能利用这些记录来跟踪热门的在线主题,并确定促成这些主题的群体的人口统计数据,包括撰稿人的地理位置以及他们的年龄、性别和族裔。更重要的是,特设小组可以实时围绕主题进行联合。一方面,这些数据对计算机科学家来说是一个挑战,他们需要开发新的工具来跟踪这些类型的信息。在这一领域的成功在商业、营销和政治上都会带来巨大的实际利益。然而,与此同时,追踪这类信息的能力引发了隐私问题,无论是对个人还是对可以通过这项新兴技术识别的群体成员来说都是如此。在我们的研究中,计算机科学家将开发能够跟踪主题和群组成员身份的工具,而传播研究人员将确定人们围绕这些类型的信息产生的隐私担忧的种类,何时,为什么,以及产生什么后果。本项目中描述的研究建立在趋势分析和社区提取的先前工作的基础上,寻求在两个方面推进研究:高效地识别专注于流行主题的临时社区,以及基于识别的社区理解个人和群体隐私。虽然趋势分析是计算机科学中一个新兴的研究领域,但现有的模型只关注一个维度(例如,位置)与趋势主题的相关性。这项研究代表着向前迈进了一步,提供了一个更复杂和更强大的工具,允许通过基于主题的社区识别来提取有趣的和潜在有用的趋势模式。与此同时,这种社区认同可能会引发社会科学尚未研究的新类型的群体隐私问题,社会科学主要关注个人隐私,而不是群体隐私。这种方法提供了一个独特的机会,可以显著影响学术界对个人和群体隐私问题的机制和动态的理解,特别是关于临时的、基于话题的群体,以及它们对社交媒体用户态度和行为的影响。如果组级别隐私是个人隐私之外的一个问题,那么我们预计会发现,当他们认同的组被包括在跟踪信息中时,特别是当话题从道德上加载时,人们会表达组隐私问题,但与个人参与者是否亲自参与Twitter对话无关。这有可能为群体隐私问题的出现创造必要和充分的条件。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracting Topics with Focused Communities for Social Content Recommendation
Privacy Cyborg: Towards Protecting the Privacy of Social Media Users
Pharos: Privacy Hazards of Replicating ORAM Stores
Pharos:复制 ORAM 存储的隐私危害
  • DOI:
    10.5441/002/edbt.2018.89
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zakhary, Victor;Sahin, Cetin;El Abbadi, Amr;Lin, Huijia;Tessaro, Stefano
  • 通讯作者:
    Tessaro, Stefano
LocBorg: Hiding Social Media User Location while Maintaining Online Persona
LocBorg:隐藏社交媒体用户位置,同时维护在线角色
Distinguishing Group Privacy From Personal Privacy: The Effect of Group Inference Technologies on Privacy Perceptions and Behaviors
区分群体隐私和个人隐私:群体推理技术对隐私认知和行为的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amr El Abbadi其他文献

Optimal Scheduling Algorithms for Tertiary Storage
  • DOI:
    10.1023/a:1025589332623
  • 发表时间:
    2003-11-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Sunil Prabhakar;Divyakant Agrawal;Amr El Abbadi
  • 通讯作者:
    Amr El Abbadi
$\mathcal{MD}$ -HBase: design and implementation of an elastic data infrastructure for cloud-scale location services
  • DOI:
    10.1007/s10619-012-7109-z
  • 发表时间:
    2012-09-05
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Shoji Nishimura;Sudipto Das;Divyakant Agrawal;Amr El Abbadi
  • 通讯作者:
    Amr El Abbadi
MEMS based storage architecture for relational databases
  • DOI:
    10.1007/s00778-005-0176-2
  • 发表时间:
    2007-01-11
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Hailing Yu;Divyakant Agrawal;Amr El Abbadi
  • 通讯作者:
    Amr El Abbadi
Progressive ranking of range aggregates
  • DOI:
    10.1016/j.datak.2006.10.008
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hua-Gang Li;Hailing Yu;Divyakant Agrawal;Amr El Abbadi
  • 通讯作者:
    Amr El Abbadi
Optimal Data-Space Partitioning of Spatial Data for Parallel I/O

Amr El Abbadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amr El Abbadi', 18)}}的其他基金

SGER: Leveraging Advanced Hardware for Streaming Applications
SGER:利用先进的硬件进行流媒体应用
  • 批准号:
    0744539
  • 财政年份:
    2007
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Efficient Approaches to Summarize Sparse & Dynamic Datasets
总结稀疏性的有效方法
  • 批准号:
    0223022
  • 财政年份:
    2003
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research (INRIA): Synchronization Approaches for Managing Distributed Data
美法合作研究 (INRIA):管理分布式数据的同步方法
  • 批准号:
    0095527
  • 财政年份:
    2001
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
Locks with Constrained Sharing: A Proposal
具有约束共享的锁:一项提案
  • 批准号:
    9004998
  • 财政年份:
    1990
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Fault-Tolerant Algorithms for Distributed Databases
分布式数据库的容错算法
  • 批准号:
    8809284
  • 财政年份:
    1988
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant

相似海外基金

Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Research Grant
Towards better structural steels sections: optimisation of high frequency induction welded line pipe products
迈向更好的结构钢截面:高频感应焊管产品的优化
  • 批准号:
    2884562
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
Analysis of synthetic derivatives with reduced lipophilicity as candidate potentiators towards better treatment alternatives for Cystic Fibrosis
分析亲脂性降低的合成衍生物作为候选增效剂,以获得更好的囊性纤维化治疗替代方案
  • 批准号:
    481159
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
Towards a better understanding of cardio and cerebrovascular diseases
加深对心脑血管疾病的认识
  • 批准号:
    2872635
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
CAREER: NgOS: Towards Better Operating Systems: Fast, Secure, and Reliable
职业:NgOS:迈向更好的操作系统:快速、安全且可靠
  • 批准号:
    2239615
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Continuing Grant
Towards a better understanding of FC-CVD carbon nanotube synthesis
更好地理解 FC-CVD 碳纳米管合成
  • 批准号:
    2891622
  • 财政年份:
    2023
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Studentship
Towards a better understanding of polar climate variability
更好地了解极地气候变化
  • 批准号:
    RGPIN-2021-03888
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
  • 批准号:
    571856-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Alliance Grants
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
  • 批准号:
    10704220
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
  • 批准号:
    2218829
  • 财政年份:
    2022
  • 资助金额:
    $ 15.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了