Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
基本信息
- 批准号:10704220
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY / ABSTRACT
The overarching goal of this study is to use new large multi-modal data resources and machine-learning-based
data mining algorithm to better understand risk factors and improve diagnosis for people with Amyotrophic
lateral sclerosis (ALS). Amyotrophic lateral sclerosis (ALS) is a rare, fatal neurodegenerative disorder, with
90% sporadic cases do not have genetic causes and their contributing risk factors are largely unknown. Most
of what is known about ALS risk factors comes from epidemiological studies using registry data, which
historically forms the main standardized big data source to help describe the natural history, epidemiology, and
burden of disease; however, the strength of evidence resulting from these studies varies greatly. One potential
major limitation to registry data are the fields collected are based upon known potential risk factors, which have
restricted its usability for exploring novel associations and causalities. Moreover, ALS is a rare disease with low
prevalence, thus making it infeasible to study its etiology using traditional observational study design due to
statistical power constraints. The digitization of healthcare records and the capacity to link to other relevant
data sources now enables a more representative, enriched and statistically powerful study population; and
ideal for leveraging machine-learning-driven, hypothesis-generating models to identify new risk factors and
patterns identify new risk factors important for understanding, diagnosing, or treating people with ALS. Building
on established well-integrated real world big data source and established ensemble embedded feature
selection framework, an established multi-marker (biomarker, clinical marker, geo-marker, socio-marker)
discovery algorithm will be developed to discover novel, generalizable risk factors (Aim 1); new symptomatic
patterns for early diagnosis (Aim 2), and effective clinical care pathways for ALS (Aim 3). To best translate
findings into clinical insights, a multi-disciplinary and multi-stakeholder team has been assembled, including not
only investigators with diverse expertise in statistics, machine learning, clinical research informatics, neurology,
computer science, epidemiology, but also an engaging patient advisory board with diverse social background.
The proposed work will be one of the first pilot studies applying AI/ML-based, hypothesis-generating algorithms
on statistically powerful real-world data to bridge the knowledge gap on ALS risk factors. The work will not only
provide CDC agency of toxic substance and disease registry (ATSDR) with empirical evidence to better
prioritize future decisions on expanding the ALS registry risk factor survey but serve to inform better designed
proposals for future etiological studies and targeted trials for ALS. This study will also provide an exemplar
framework which can be generalizable to advance research of other rare and complex disease domains by
leveraging real world evidence.
项目摘要/摘要
本研究的总体目标是利用新的大型多模式数据资源和基于机器学习的
数据挖掘算法更好地了解危险因素并提高肌营养不良患者的诊断水平
侧索硬化症(ALS)肌萎缩侧索硬化症(ALS)是一种罕见的致命的神经退行性疾病,
90%的散发病例没有遗传原因,其致病风险因素在很大程度上是未知的。多数
已知的肌萎缩侧索硬化症风险因素来自使用登记数据的流行病学研究,这
历史上形成了主要的标准化大数据来源,以帮助描述自然历史、流行病学和
疾病负担;然而,这些研究得出的证据强度差别很大。一种潜力
登记处数据的主要限制是收集的字段基于已知的潜在风险因素,这些因素具有
限制了它在探索新的关联和因果关系方面的可用性。此外,ALS是一种罕见的疾病,具有较低的
患病率,从而使得使用传统的观察性研究设计研究其病因是不可行的,因为
统计功率约束。医疗记录的数字化和链接到其他相关信息的能力
数据来源现在能够使研究群体更具代表性、更丰富和统计能力更强;以及
非常适合利用机器学习驱动的假设生成模型来识别新的风险因素和
模式识别对了解、诊断或治疗肌萎缩侧索硬化症患者非常重要的新风险因素。建房
关于已建立的集成良好的现实世界大数据源和已建立的集成嵌入特征
选择框架,已建立的多标记(生物标记、临床标记、地理标记、社会标记)
将开发发现算法以发现新的、可概括的风险因素(目标1);新的症状
早期诊断模式(目标2)和肌萎缩侧索硬化症的有效临床护理途径(目标3)。翻译得最好
为了将发现转化为临床见解,一个多学科和多利益相关者的团队已经组建,包括
只有在统计学、机器学习、临床研究信息学、神经学、
计算机科学、流行病学,但也是一个具有不同社会背景的迷人的患者顾问委员会。
这项拟议的工作将是应用基于AI/ML的假设生成算法的首批试点研究之一
基于统计上强大的真实世界数据,以弥合关于肌萎缩侧索硬化症风险因素的知识差距。这项工作不仅将
为有毒物质和疾病登记机构(ATSDR)提供经验证据,以更好地
优先考虑未来扩大肌萎缩侧索硬化症注册风险因素调查的决定,但有助于更好地设计
对未来ALS的病因学研究和靶向试验提出建议。这项研究还将提供一个范例
框架,可推广到其他罕见和复杂疾病领域的研究,通过
利用真实世界的证据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xing Song其他文献
Xing Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xing Song', 18)}}的其他基金
Towards Better Understanding of ALS using a Multi-Marker Discovery Approach from a Multi-Modal Database (ALS4M)
使用多模态数据库的多标记发现方法更好地理解 ALS (ALS4M)
- 批准号:
10610610 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
相似海外基金
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Research Grant
Towards a better understanding of cardio and cerebrovascular diseases
加深对心脑血管疾病的认识
- 批准号:
2872635 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
Towards a better understanding of FC-CVD carbon nanotube synthesis
更好地理解 FC-CVD 碳纳米管合成
- 批准号:
2891622 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Alliance Grants
Towards a better understanding of polar climate variability
更好地了解极地气候变化
- 批准号:
RGPIN-2021-03888 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
- 批准号:
2218829 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
A better understanding of the association between problem gambling and psychotic disorders in young adults: a new path towards recovery?
更好地了解青少年问题赌博与精神障碍之间的关联:康复的新途径?
- 批准号:
473958 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Fellowship Programs
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
- 批准号:
2218827 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Towards a better understanding of cardio and cerebrovascular diseases
加深对心脑血管疾病的认识
- 批准号:
2737547 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
Towards a better understanding of the lifecycle of Pesticides in the Atmosphere
更好地了解大气中农药的生命周期
- 批准号:
2738730 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Studentship