PAPM EAGER: Microfluidic Root Exudate Sampler with High Spatio-Temporal Sampling Resolution
PAPM EAGER:具有高时空采样分辨率的微流控根分泌物采样器
基本信息
- 批准号:1650182
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Roots interact with and respond to the biotic and abiotic environment in which they live (the rhizosphere) by qualitatively and quantitatively modulating material exuded by roots. These exudates use the language of chemistry to communicate between and among the biotic and abiotic components. Powerful DNA sequencing platforms and analytical tools for identifying chemical components are now available for profiling these interactions among the rhizosphere and the root components. The integrated application of these analytical strategies is limited by the ability to access and isolate exudates from roots and the rhizosphere. Existing exudate sampling tools are bulky, require large amounts of soil, and significantly alter the soil structure. This difficulty of sampling exudates has slowed the process of linking plant genetic determinants to rhizosphere microbiome genomic and metabolic features. This project addresses key design, fabrication, integration, and operation problems faced in developing next-generation root exudate sampling tools. The research will develop greatly-needed tools for probing the chemical exchange between plants and the micro- and macro-organisms in the rhizosphere. The root exudates are critical drivers of microbiome assembly and plant-pest/pathogen outcomes. The dynamic and environmentally responsive nature of root exudates illustrates the importance of developing sampling tools that are functional in a real-world situation, rather than the current tools that are limited to use in primarily artificial hydroponic and polymer-embedded systems. The samplers that will be developed will significantly impact the pace of research on rhizosphere microbiome by enabling continuous, spatially-resolved sampling of the microbes and exudates on roots grown in real-world conditions. This enhanced capability will meet societal needs to increase agricultural productivity for an increasing global population in the face of the uncertainties associated with climate-change, and thus develop new strategies to impact gains in agricultural productivity. This research will enhance interdisciplinary STEM workforce development by hosting at least two under-represented students in an undergraduate Howard Hughes Medical Institute summer internship program, providing research opportunities to four undergraduate senior students, and providing hands-on workshops to a high school Science Bound program to engage students in tech-transfer endeavors, while highlighting plant-microbe contributions to agriculture and global food security. This project will elaborate advanced technology for gathering high spatiotemporal resolution data of metabolites and microbes in the rhizosphere. This objective will be met by developing a modular toolkit for the localized sampling of rhizosphere exudates from roots grown in soil matrices. This toolkit will consist of (i) a single site exudate sampler, which will serve as a building block of more complex modular sampling systems; (ii) distributed exudate samplers able to extract exudates from key locations with high spatial resolution; (iii) spine-like flexible exudate samplers, providing conformational fitting at the root-soil interface, which will maximize sampling at this crucial interface; and (iv) parallel gradient samplers positioned radially outward from a root, providing access to radial gradients of exudates. These samplers will be uniquely coupled with microfluidic sorters to enable automated separation and isolation of microbes from the collected exudates for simultaneous analysis of both the microbes and the soluble exudates. Furthermore, these samplers will integrate miniature tensiometers, which will allow monitoring of local soil potential condition at the sampling sites, and trigger the automatic start of sampling. Rendering such a "smart" device will improve temporal resolution of sampling. Validating the utility of these integrated devices will involve installing them, collecting and sorting samples, and analyzing the interactions between the rhizosphere and genetically specified maize roots, grown under gnotobiotic conditions with and without microbes. The multidisciplinary research has drawn expertise ranging from microsystems design and construction, microbiome and metabolomics, to address the proposed goal and deliver on the specific aims.
根与它们所处的生物和非生物环境(根际)相互作用,并通过质和量调节根分泌的物质来作出反应。这些渗出物使用化学语言在生物和非生物成分之间进行交流。强大的DNA测序平台和鉴定化学成分的分析工具现在可用于分析根际和根成分之间的这些相互作用。这些分析策略的综合应用受到从根和根际获取和分离渗出物的能力的限制。现有的渗出液取样工具体积庞大,需要大量的土壤,并且显著地改变了土壤结构。这种取样的困难减缓了将植物遗传决定因素与根际微生物组基因组和代谢特征联系起来的过程。该项目解决了开发下一代根分泌物采样工具所面临的关键设计、制造、集成和操作问题。该研究将为探索植物与根际微生物和宏观生物之间的化学交换提供急需的工具。根系分泌物是微生物组聚集和植物病虫害/病原体结果的关键驱动因素。根系分泌物的动态和环境响应特性说明了开发在现实环境中起作用的采样工具的重要性,而不是目前仅限于人工水培和聚合物嵌入系统的工具。将开发的采样器将通过实现在现实条件下生长的根上的微生物和渗出物的连续、空间分辨采样,显著影响根际微生物组研究的步伐。面对与气候变化相关的不确定性,这种增强的能力将满足社会对增加全球人口的农业生产力的需求,从而制定新的战略来影响农业生产力的提高。这项研究将通过在霍华德休斯医学研究所的本科生暑期实习项目中接待至少两名代表性不足的学生,为四名本科高年级学生提供研究机会,并为高中科学Bound项目提供实践研讨会,让学生参与技术转移的努力,同时强调植物微生物对农业和全球粮食安全的贡献,从而加强跨学科STEM劳动力的发展。该项目将采用先进的技术收集根际代谢物和微生物的高时空分辨率数据。这一目标将通过开发一个模块化工具包来实现,用于在土壤基质中生长的根的根际渗出物的局部采样。该工具包将包括:(i)单个站点渗出物采样器,它将作为更复杂的模块化采样系统的构建块;(ii)能够以高空间分辨率从关键位置提取渗出物的分布式渗出物采样器;(iii)棘状柔性渗出液采样器,在根-土界面处提供构象拟合,从而最大限度地在这一关键界面取样;(iv)平行梯度采样器从根部径向向外放置,提供对渗出物径向梯度的访问。这些采样器将独特地与微流控分选器相结合,以便从收集的渗出液中自动分离和分离微生物,同时分析微生物和可溶性渗出液。此外,这些采样器将集成微型张力计,这将允许在采样点监测当地土壤潜在条件,并触发自动开始采样。渲染这样一个“智能”设备将提高采样的时间分辨率。验证这些集成装置的效用将涉及安装它们,收集和分类样品,以及分析根际和基因指定的玉米根之间的相互作用,这些根是在有微生物和没有微生物的非生物条件下生长的。多学科研究汇集了微系统设计与构建、微生物组学和代谢组学等方面的专业知识,以解决提出的目标并实现具体目标。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miniaturized, Field-deployable, Continuous Soil Water Potential Sensor
小型化、可现场部署、连续土壤水势传感器
- DOI:10.1109/jsen.2020.3007367
- 发表时间:2020
- 期刊:
- 影响因子:4.3
- 作者:Chen, Yuncong;Tian, Yang;Wang, Xinran;Wei, Le;Dong, Liang
- 通讯作者:Dong, Liang
Microfluidic chip for automated screening of carbon dioxide conditions for microalgal cell growth
- DOI:10.1063/1.5012508
- 发表时间:2017-11-01
- 期刊:
- 影响因子:3.2
- 作者:Xu, Zhen;Wang, Yingjun;Dong, Liang
- 通讯作者:Dong, Liang
In-Planta Nitrate Detection Using Insertable Plant Microsensor
使用可插入植物微传感器进行植物内硝酸盐检测
- DOI:10.1109/transducers.2019.8808527
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jiao, Yueyi;Wang, Xinran;Chen, Yuncong;Castellano, Michael J.;Schnable, James C.;Schnable, Patrick S.;Dong, Liang
- 通讯作者:Dong, Liang
High-throughput phenotyping of morphological traits and nutrient uptake of plants using microfluidics devices
使用微流体装置对植物的形态特征和养分吸收进行高通量表型分析
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dong, L.
- 通讯作者:Dong, L.
Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite
- DOI:10.1021/acsami.9b07120
- 发表时间:2019-08-14
- 期刊:
- 影响因子:9.5
- 作者:Ali, Md. Azahar;Wang, Xinran;Dong, Liang
- 通讯作者:Dong, Liang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Dong其他文献
Improvement of Linearity and Mitigation of Dispersion-Induced Power Fading in Multi-Channel Phase-Modulated Analog Photonic Link Based on a Polarization Modulator
基于偏振调制器的多通道相位调制模拟光子链路的线性度改进和色散引起的功率衰落的缓解
- DOI:
10.1109/jlt.2018.2851601 - 发表时间:
2018-09 - 期刊:
- 影响因子:4.7
- 作者:
Zhai Weile;Wen Aijun;Zhang Huixing;Zhang Wu;Liang Dong - 通讯作者:
Liang Dong
Cooperative Localization and Tracking of Mobile Ad Hoc Networks
- DOI:
10.1109/tsp.2012.2191778 - 发表时间:
2012-07 - 期刊:
- 影响因子:5.4
- 作者:
Liang Dong - 通讯作者:
Liang Dong
Trajectory variations of optical Bloch oscillations for Airy beams in transversely and longitudinally modulated photonic lattices
横向和纵向调制光子晶格中艾里光束光学布洛赫振荡的轨迹变化
- DOI:
10.1364/ao.56.003484 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Cao Zheng;Li Xiaojun;Tan Qinggui;Jiang Wei;Liang Dong;Dou Jinfang - 通讯作者:
Dou Jinfang
A Summary of the Large-Scale Access Convergence Network Structure
大规模接入融合网络结构综述
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.1
- 作者:
Lan Julong;Zhang Xiaohui;Shen Juan;Hu Yuxiang;Wang Xiang;Mao Zhenshan;Wang Lingqiang;Liang Dong - 通讯作者:
Liang Dong
Deep Manifold Learning for Dynamic MR Imaging
动态 MR 成像的深度流形学习
- DOI:
10.1109/tci.2021.3131564 - 发表时间:
2021-03 - 期刊:
- 影响因子:5.4
- 作者:
Ke Ziwen;Cui Zhuo-Xu;Huang Wenqi;Cheng Jing;Jia Sen;Ying Leslie;Zhu Yanjie;Liang Dong - 通讯作者:
Liang Dong
Liang Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Dong', 18)}}的其他基金
SCC-IRG Track 1: Connecting Farming Communities for Sustainable Crop Production and Environment Using Smart Agricultural Drainage Systems
SCC-IRG 第 1 轨道:利用智能农业排水系统连接农业社区,实现可持续作物生产和环境
- 批准号:
2125484 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of Photonic Professional Nanoscribe Instrument
MRI:购买光子专业 Nanoscribe 仪器
- 批准号:
2019096 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: BTT EAGER: A wearable plant sensor for real-time monitoring of sap flow and stem diameter to accelerate breeding for water use efficiency
合作研究:BTT EAGER:一种可穿戴植物传感器,用于实时监测树液流量和茎直径,以加速育种,提高水分利用效率
- 批准号:
1844563 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Silicon Nano-Opto-Fluidics Enabled Multi-Dimensional, High-Throughput Molecular and Size Profiling of Exosomes
合作研究:硅纳米光流控技术实现了外泌体的多维、高通量分子和尺寸分析
- 批准号:
1711839 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IDBR: TYPE A: High-Throughput, Large-Scale Plant Phenotyping Platform
IDBR:A 型:高通量、大规模植物表型分析平台
- 批准号:
1353819 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Drug Trips for Worms: Smart Droplet Microfluidics for Real-time, High-throughput Drug Screening of Single Organisms
蠕虫药物之旅:用于单一生物体实时、高通量药物筛选的智能液滴微流控
- 批准号:
1102354 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Programmable, Reconfigurable, and Tunable Photonic Integrated Circuit Platform through the Fusion of Photonic Crystals and Nano-Electro-Mechanical Systems
职业:通过光子晶体和纳米机电系统的融合实现可编程、可重新配置和可调谐的光子集成电路平台
- 批准号:
0954765 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Addressing the Cyclospora Cayetanensis Detection Gap: A DNA Aptamer and Microfluidic Device Approach
EAGER:解决 Cyclospora Cayetanensis 检测差距:DNA 适体和微流体装置方法
- 批准号:
2348775 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
- 批准号:
2337788 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A Microfluidic Device for Studying Environment-Triggered Migration of Glioblastoma Cells
EAGER:一种用于研究环境触发的胶质母细胞瘤细胞迁移的微流体装置
- 批准号:
2129352 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Microfluidic Design Automation
EAGER:微流体设计自动化
- 批准号:
2140148 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Non-invasive monitoring of arterial parameters via model-based analysis of arterial pulse signals measured by a microfluidic-based tactile sensor
EAGER:通过基于微流体的触觉传感器测量的动脉脉搏信号进行基于模型的分析,对动脉参数进行无创监测
- 批准号:
1936005 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A Microfluidic Device for Studying Environment-Triggered Migration of Glioblastoma Cells
EAGER:一种用于研究环境触发的胶质母细胞瘤细胞迁移的微流体装置
- 批准号:
1940790 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Collaborative: Secure and Trustworthy Cyberphysical Microfluidic Systems
EAGER:协作:安全且值得信赖的网络物理微流体系统
- 批准号:
1833622 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Collaborative: Secure and Trustworthy Cyberphysical Microfluidic Systems
EAGER:协作:安全且值得信赖的网络物理微流体系统
- 批准号:
1833624 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Collaborative: Secure and Trustworthy Cyberphysical Microfluidic Systems
EAGER:协作:安全且值得信赖的网络物理微流体系统
- 批准号:
1833623 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER Collaborative Proposal: A microfluidic platform for the discovery of new, life-like chemical systems
EAGER 合作提案:用于发现新的、逼真的化学系统的微流体平台
- 批准号:
1624413 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




