Collaborative Research: Silicon Nano-Opto-Fluidics Enabled Multi-Dimensional, High-Throughput Molecular and Size Profiling of Exosomes
合作研究:硅纳米光流控技术实现了外泌体的多维、高通量分子和尺寸分析
基本信息
- 批准号:1711839
- 负责人:
- 金额:$ 28.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Liquid biopsy has significant advantages over traditional tumor biopsies, because it is minimally invasive and uses biofluids, such as blood and urine, to diagnose cancer and other diseases in their early stages. Exosomes, which are actively secreted from cancer cells, carry molecular constituents of their originating cells. Because these membranous extracellular vesicles can serve as cellular surrogates, exosomes have emerged as a new type of potent biomarkers. However, conventional exosome analysis methods such as immunoblotting or enzyme-linked immunosorbent assays are costly and require approximately twelve hours and excessive volumes of serum to detect transmembrane proteins on the surface of exosomes. Exosome separation requires complex steps to remove debris or cellular components that will confound downstream analysis. High-throughput molecular profiling of exosomes using miniature label-free biosensors is not available. The goal of this project is to develop a new capability to rapidly screen and profile exosomes based on both molecular and size characteristics. This research will lead to a transformative change in exosome analysis by integrating two state-of-the-art technologies on a single silicon chip. In addition, this research will be integrated with education through adding new lab modules to existing undergraduate biomedical engineering minor program curriculum, recruiting female students, and providing summer internship opportunities to African-American students to participate in the project at Iowa State University, and developing a new undergraduate-level course related to nanobiotechnology at Arizona State University. The project will lead to an integrated silicon-based nano-opto-fluidic platform for rapidly and continuously profiling of both molecular and size features of exosomes. Cascaded nanoscale deterministic lateral displacement pillar arrays will be developed to simplify the isolation and size profiling of exosomes. The exosomes will be effectively separated from interference molecules present in the fluid sample. High-performance lateral flow-through optical biosensors will be developed to quantify the separated exosomes. The exosome samples can flow through the nanoscale biosensor and be immobilized and enriched on the functionalized sensor surface. Because both the separation and detection modules have the features of lateral flow designs, they can be integrated on a single silicon chip using the nanoimprint lithography process. The integration of these two functions will lead to an unprecedented ability to continuously streamline exosome separation, enrichment and detection processes to profile multi-dimensional molecular and size information for multiple protein markers within one hour. The biological validation plan of the project will be carried out using the proposed device to sort and sense exosomes released from a parasitic nematode and etiological agent of the human disease, Lymphatic Filariasis. The proposed technology is advantageous over the lab-based methods in terms of cost, sample consumption, and throughput, and could be extended to the profiling of circulating exocellular exosomes in human or animal biofluids to diagnose a variety of diseases, identify companion biomarkers that are important for drug discovery, and monitor the progress of a therapy.
液体活检比传统的肿瘤活检有显著的优势,因为它是微创的,并且使用生物液体,如血液和尿液,在早期阶段诊断癌症和其他疾病。外泌体是由癌细胞积极分泌的,它携带着癌细胞起源细胞的分子成分。由于这些膜状细胞外囊泡可以作为细胞替代物,外泌体已成为一种新型的有效生物标志物。然而,传统的外泌体分析方法,如免疫印迹法或酶联免疫吸附法,是昂贵的,并且需要大约12小时和大量的血清来检测外泌体表面的跨膜蛋白。外泌体分离需要复杂的步骤来去除会混淆下游分析的碎片或细胞成分。使用微型无标签生物传感器的外泌体的高通量分子分析是不可用的。该项目的目标是开发一种基于分子和大小特征快速筛选和分析外泌体的新能力。该研究通过将两种最先进的技术集成到单个硅芯片上,将导致外泌体分析的革命性变化。此外,这项研究将通过在现有的本科生物医学工程辅修课程中增加新的实验模块,招募女学生,并为爱荷华州立大学的非裔美国学生提供暑期实习机会,以及在亚利桑那州立大学开发一门新的与纳米生物技术相关的本科课程,与教育相结合。该项目将导致一个集成的硅基纳米光流体平台,用于快速连续地分析外泌体的分子和大小特征。级联纳米级确定性横向位移柱阵列将被开发,以简化外泌体的分离和大小分析。外泌体将与存在于液体样品中的干扰分子有效分离。将开发高性能的横向流动光学生物传感器来定量分离的外泌体。外泌体样品可以通过纳米级生物传感器流动,并在功能化传感器表面进行固定化和富集。由于分离和检测模块都具有横向流动设计的特点,因此可以使用纳米压印光刻工艺将它们集成在单个硅芯片上。这两种功能的整合将导致前所未有的能力,不断简化外泌体分离,富集和检测过程,以在一小时内分析多个蛋白质标记物的多维分子和大小信息。该项目的生物学验证计划将使用拟议的设备进行分类和检测从寄生虫和人类疾病淋巴丝虫病的病原释放的外泌体。所提出的技术在成本、样品消耗和吞吐量方面优于基于实验室的方法,并且可以扩展到对人类或动物生物体液中循环的细胞外泌体进行分析,以诊断各种疾病,识别对药物发现很重要的伴随生物标志物,并监测治疗进展。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanofabrication of Chalcogenide Glass for Infrared Sensors
用于红外传感器的硫系玻璃的纳米加工
- DOI:10.1109/transducers.2019.8808451
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wei, Le;Dong, Liang;Lu, Meng
- 通讯作者:Lu, Meng
MEMS Flow Sensor Using Suspended Graphene Diaphragm With Microhole Arrays
- DOI:10.1109/jmems.2018.2874231
- 发表时间:2018-12-01
- 期刊:
- 影响因子:2.7
- 作者:Wang, Qiugu;Wang, Yifei;Dong, Liang
- 通讯作者:Dong, Liang
Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal
- DOI:10.1039/c7lc01211j
- 发表时间:2018-03-07
- 期刊:
- 影响因子:6.1
- 作者:Ali, Md. Azahar;Tabassum, Shawana;Dong, Liang
- 通讯作者:Dong, Liang
RAPID DIFFERENTIATION OF HOST AND PARASITE EXOSOME VESICLES USING PHOTONIC CRYSTAL BIOSENSOR
使用光子晶体生物传感器快速区分宿主和寄生虫外泌体囊泡
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wang, Y;Yuan, W;Kimber, M;Dong, L
- 通讯作者:Dong, L
Tunable Resonant‐Photopyroelectric Detector Using Chalcogenide−Metal−Fluoropolymer Nanograting
使用硫族化物、金属、含氟聚合物纳米光栅的可调谐谐振光热释电探测器
- DOI:10.1002/adom.202101147
- 发表时间:2021
- 期刊:
- 影响因子:9
- 作者:Wei, Le;Monshat, Hosein;Qian, Jingjing;Dong, Liang;Lu, Meng
- 通讯作者:Lu, Meng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Dong其他文献
Improvement of Linearity and Mitigation of Dispersion-Induced Power Fading in Multi-Channel Phase-Modulated Analog Photonic Link Based on a Polarization Modulator
基于偏振调制器的多通道相位调制模拟光子链路的线性度改进和色散引起的功率衰落的缓解
- DOI:
10.1109/jlt.2018.2851601 - 发表时间:
2018-09 - 期刊:
- 影响因子:4.7
- 作者:
Zhai Weile;Wen Aijun;Zhang Huixing;Zhang Wu;Liang Dong - 通讯作者:
Liang Dong
Cooperative Localization and Tracking of Mobile Ad Hoc Networks
- DOI:
10.1109/tsp.2012.2191778 - 发表时间:
2012-07 - 期刊:
- 影响因子:5.4
- 作者:
Liang Dong - 通讯作者:
Liang Dong
Trajectory variations of optical Bloch oscillations for Airy beams in transversely and longitudinally modulated photonic lattices
横向和纵向调制光子晶格中艾里光束光学布洛赫振荡的轨迹变化
- DOI:
10.1364/ao.56.003484 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Cao Zheng;Li Xiaojun;Tan Qinggui;Jiang Wei;Liang Dong;Dou Jinfang - 通讯作者:
Dou Jinfang
A Summary of the Large-Scale Access Convergence Network Structure
大规模接入融合网络结构综述
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.1
- 作者:
Lan Julong;Zhang Xiaohui;Shen Juan;Hu Yuxiang;Wang Xiang;Mao Zhenshan;Wang Lingqiang;Liang Dong - 通讯作者:
Liang Dong
Deep Manifold Learning for Dynamic MR Imaging
动态 MR 成像的深度流形学习
- DOI:
10.1109/tci.2021.3131564 - 发表时间:
2021-03 - 期刊:
- 影响因子:5.4
- 作者:
Ke Ziwen;Cui Zhuo-Xu;Huang Wenqi;Cheng Jing;Jia Sen;Ying Leslie;Zhu Yanjie;Liang Dong - 通讯作者:
Liang Dong
Liang Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Dong', 18)}}的其他基金
SCC-IRG Track 1: Connecting Farming Communities for Sustainable Crop Production and Environment Using Smart Agricultural Drainage Systems
SCC-IRG 第 1 轨道:利用智能农业排水系统连接农业社区,实现可持续作物生产和环境
- 批准号:
2125484 - 财政年份:2021
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
MRI: Acquisition of Photonic Professional Nanoscribe Instrument
MRI:购买光子专业 Nanoscribe 仪器
- 批准号:
2019096 - 财政年份:2020
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: BTT EAGER: A wearable plant sensor for real-time monitoring of sap flow and stem diameter to accelerate breeding for water use efficiency
合作研究:BTT EAGER:一种可穿戴植物传感器,用于实时监测树液流量和茎直径,以加速育种,提高水分利用效率
- 批准号:
1844563 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
PAPM EAGER: Microfluidic Root Exudate Sampler with High Spatio-Temporal Sampling Resolution
PAPM EAGER:具有高时空采样分辨率的微流控根分泌物采样器
- 批准号:
1650182 - 财政年份:2016
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
IDBR: TYPE A: High-Throughput, Large-Scale Plant Phenotyping Platform
IDBR:A 型:高通量、大规模植物表型分析平台
- 批准号:
1353819 - 财政年份:2014
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Drug Trips for Worms: Smart Droplet Microfluidics for Real-time, High-throughput Drug Screening of Single Organisms
蠕虫药物之旅:用于单一生物体实时、高通量药物筛选的智能液滴微流控
- 批准号:
1102354 - 财政年份:2011
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
CAREER: Programmable, Reconfigurable, and Tunable Photonic Integrated Circuit Platform through the Fusion of Photonic Crystals and Nano-Electro-Mechanical Systems
职业:通过光子晶体和纳米机电系统的融合实现可编程、可重新配置和可调谐的光子集成电路平台
- 批准号:
0954765 - 财政年份:2010
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The Roles of Seasonality, Silicification, and Alteration in Nitrogen and Silicon Isotope Paleo-proxy Variability
合作研究:季节性、硅化和蚀变在氮和硅同位素古代理变异中的作用
- 批准号:
2218705 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Collaborative Research: The Roles of Seasonality, Silicification, and Alteration in Nitrogen and Silicon Isotope Paleo-proxy Variability
合作研究:季节性、硅化和蚀变在氮和硅同位素古代理变异中的作用
- 批准号:
2218704 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Collaborative Research: Novel silicon-based optoelectronic materials
合作研究:新型硅基光电材料
- 批准号:
2226700 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Electronic-Photonic Silicon Carbide Probes for Neural Recording and Stimulation
合作研究:用于神经记录和刺激的新型电子光子碳化硅探针
- 批准号:
2212533 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: Novel Electronic-Photonic Silicon Carbide Probes for Neural Recording and Stimulation
合作研究:用于神经记录和刺激的新型电子光子碳化硅探针
- 批准号:
2211969 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: Novel silicon-based optoelectronic materials
合作研究:新型硅基光电材料
- 批准号:
2226699 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




