EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
基本信息
- 批准号:1650723
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid adoption of Electronic Health Records (EHRs) across the U.S. healthcare systems coupled with the capability of linking EHRs to research biorepositories provides a unique opportunity for conducting large-scale Precision Medicine research. A critical step to make such research possible is identification of cohorts by defining inclusion and exclusion criteria that algorithmically select sets of patients based on available clinical data. For most of the existing research, the criteria for generating those patient cohorts are defined manually, which makes the entire process slow, labor intensive and not scalable. This project develops patient similarity learning algorithms to enable automatic cohort identification, which will accelerate the research of precision medicine.The massive clinical data around patients are highly heterogeneous and sparse. Although there are some patient similarity learning algorithms, they typically work with a single type of patient data (e.g., just using diagnosis information in patient EHR) and cannot handle those challenges mentioned above effectively. This project develops advanced patient similarity learning algorithms by 1) learning composite patient similarities through a refinement process from multiple base similarity measures, with each base similarity being evaluated from a specific source of patient data or a specific form of patient representation; and 2) integrating information from multiple related auxiliary domains, such as drug, disease, and genomic information. Those information effectively regularizes the patient similarity learning process and makes it less sensitive to data sparsity.
电子健康记录(EHR)在整个美国医疗保健系统中的迅速采用,加上将EHR链接到研究生物信息库的能力,为开展大规模精密医学研究提供了独特的机会。使这类研究成为可能的一个关键步骤是通过定义纳入和排除标准来确定队列,这些标准根据现有的临床数据通过算法选择患者组。在现有的大多数研究中,生成这些患者队列的标准都是手动定义的,这使得整个过程变得缓慢、劳动密集型和不可扩展。本项目开发患者相似度学习算法,实现自动队列识别,将加速精准医学的研究。尽管有一些患者相似性学习算法,但它们通常使用单一类型的患者数据(例如,仅使用患者电子病历中的诊断信息),并且无法有效地应对上述挑战。该项目通过以下方式开发先进的患者相似性学习算法:1)通过从多个基本相似性度量中通过细化过程学习复合患者相似性,其中每个基本相似性是从特定的患者数据来源或特定形式的患者表示进行评估;以及2)集成来自多个相关辅助领域的信息,例如药物、疾病和基因组信息。这些信息有效地规范了患者的相似性学习过程,并使其对数据稀疏性不那么敏感。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polyadic Regression and its Application to Chemogenomics
- DOI:10.1137/1.9781611974973.9
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ioakeim Perros;Fei Wang;Ping Zhang;Peter Walker;R. Vuduc;Jyotishman Pathak;Jimeng Sun
- 通讯作者:Ioakeim Perros;Fei Wang;Ping Zhang;Peter Walker;R. Vuduc;Jyotishman Pathak;Jimeng Sun
Multitask Dyadic Prediction and Its Application in Prediction of Adverse Drug-Drug Interaction
- DOI:10.1609/aaai.v31i1.10718
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:Bo Jin;Haoyu Yang;Cao Xiao;Ping Zhang;Xiaopeng Wei;Fei Wang
- 通讯作者:Bo Jin;Haoyu Yang;Cao Xiao;Ping Zhang;Xiaopeng Wei;Fei Wang
Structural Deep Embedding for Hyper-Networks
- DOI:10.1609/aaai.v32i1.11266
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Ke Tu;Peng Cui;Xiao Wang;Fei Wang;Wenwu Zhu
- 通讯作者:Ke Tu;Peng Cui;Xiao Wang;Fei Wang;Wenwu Zhu
Robust finite mixture regression for heterogeneous targets
- DOI:10.1007/s10618-018-0564-z
- 发表时间:2018-04
- 期刊:
- 影响因子:4.8
- 作者:Jian Liang;Kun Chen;Ming Lin;Changshui Zhang;Fei Wang
- 通讯作者:Jian Liang;Kun Chen;Ming Lin;Changshui Zhang;Fei Wang
Dynamical Origins of Distribution Functions
- DOI:10.1145/3292500.3330842
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Chengxi Zang;Peng Cui;Wenwu Zhu;Fei Wang
- 通讯作者:Chengxi Zang;Peng Cui;Wenwu Zhu;Fei Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Wang其他文献
Probing the Galactic halo with RR lyrae stars − III. The chemical and kinematic properties of the stellar halo
用天琴座 RR 星探测银河晕 – III。
- DOI:
10.1093/mnras/stac2666 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.8
- 作者:
Gaochao Liu;Yang Huang;Sarah Ann Bird;Huawei Zhang;Fei Wang;Haijun Tian - 通讯作者:
Haijun Tian
Efficacy and safety of laser therapy for the treatment of retinopathy of prematurity
激光治疗早产儿视网膜病变的疗效和安全性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Fei Wang;Linna Hao - 通讯作者:
Linna Hao
Application of Augmented Reality (AR) Technologies in inhouse Logistics
增强现实(AR)技术在内部物流中的应用
- DOI:
10.1051/e3sconf/202014502018 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Wang;Fei Wang;Wei Song;Shunhu Su - 通讯作者:
Shunhu Su
TheWNT/beta-catenin pathway is involved in the anti-adipogenic activity ofcerebrosides from the sea cucumber Cucumaria frondosa
WNT/β-连环蛋白途径参与海参脑苷脂的抗脂肪形成活性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.1
- 作者:
Hui Xu;Fei Wang;Jingfeng Wang;Jie Xu;Yuming Wang;Changhu Xue - 通讯作者:
Changhu Xue
Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of PbnAun (n ¼ 2–12) clusters: a DFT study
对 PbnAun (n × 2−12) 团簇的结构、相对稳定、电子和气体传感特性的理论见解:一项 DFT 研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Gaofeng Li;Xiumin Chen;Zhiqiang Zhou;Fei Wang;Hongwei Yang;Jia Yang;Baoqiang Xu;Bin Yang;Dachun Liu - 通讯作者:
Dachun Liu
Fei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Wang', 18)}}的其他基金
Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
- 批准号:
2320328 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
- 批准号:
2301392 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
- 批准号:
2212175 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
- 批准号:
2027970 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
- 批准号:
1833794 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences
职业:离散时间事件序列的可解释深度建模
- 批准号:
1750326 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
- 批准号:
1716432 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
- 批准号:
0953267 - 财政年份:2010
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
- 批准号:
0230108 - 财政年份:2003
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SBIR PHASE I: Advanced Membrane for Waste Metal Recovery
SBIR 第一阶段:用于废金属回收的先进膜
- 批准号:
9561754 - 财政年份:1996
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似海外基金
患者・市民にとってのPPI(Patient and Public Involvement)の有用性の検討
检查 PPI(患者和公众参与)对患者和公民的有用性
- 批准号:
24K13672 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
- 批准号:
10103989 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
EU-Funded
Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
- 批准号:
10105921 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
EU-Funded
Reducing Harm In Ventilated Patients: First In-patient Evaluation Of A Smart Endotracheal Tube
减少通气患者的伤害:智能气管插管的首次住院评估
- 批准号:
MR/Y008642/1 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Research Grant
Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
- 批准号:
24K13361 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Patient iPSC-derived brain organoids as a model for cognitive phenotypes of Duchenne muscular dystrophy
患者 iPSC 衍生的脑类器官作为杜氏肌营养不良症认知表型的模型
- 批准号:
24K18635 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
- 批准号:
10103504 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Collaborative R&D
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
- 批准号:
10106117 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Launchpad
Approaches to building patient-oriented research capacity and their applications to the transformation of healthcare services and interventions
建立以患者为中心的研究能力的方法及其在医疗保健服务和干预措施转型中的应用
- 批准号:
477895 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Salary Programs
看護管理情報とPatient/Nurse Outcomeに関するエビデンス創出のためのPlatform開発
开发平台,用于创建有关护理管理信息和患者/护士结果的证据
- 批准号:
23K27871 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




