Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning

合作研究:III:媒介:计算隐私和机器学习的综合框架

基本信息

项目摘要

Machine learning has grown to increase prominence over the past years, finding applications in various domains from image and speech processing to disease diagnosis. Despite the great success of machine learning techniques, massive amounts of data are collected and used to train the machine learning models. The privacy of sensitive data has become a big concern. Existing efforts are still preliminary, and enormous challenges remain to be resolved. Crucially, stronger privacy protection guarantees often sacrifice important properties of machine learning models, such as predictive utility and fairness, which can be undesirable or completely unacceptable. This project develops a consolidated privacy protection framework for machine learning systems that comprehensively considers the optimal trade-offs between computational privacy and several critical properties of machine learning, including utility, fairness, and distributed learning. The project will provide a comprehensive set of tools to protect data privacy for real-world machine learning applications under different circumstances. The privacy-preserving techniques will have a transformative impact on machine learning systems used by various sectors, allowing companies and hospitals to enjoy the advantages of machine learning techniques on big data while protecting data privacy under corresponding regulations.The research project thoroughly examines and discusses the real-world complicacy or restrictions when applying differential privacy, from privacy-utility trade-off, privacy-fairness relation, privacy in distributed learning, to post-learning privacy protection. The framework developed by the project takes deep root in rigorous optimization frameworks, often accompanied by theoretical guarantees and aided by cutting-edge algorithmic tools such as meta-learning, adversarial learning, and federated learning. Besides, the framework carries the following methodological innovations: differential privacy tailored to learning problems; customized privacy addressing heterogeneity in collaborative learning; privacy-protection of learned models through unlearning; consolidated privacy and fairness in learning. Those efforts will significantly augment the practicality and scalability of differential privacy. The project will be systematically evaluated on various real-world medical applications, and the tools will be readily used to tackle critical challenges in medical research. The outcomes will be incorporated into multiple courses at both undergraduate and graduate levels. The research outcomes will be disseminated broadly and comprehensively through open-source software releases and workshops, the involvement of undergraduate research, and outreach to K-12 education, focusing on minorities and under-representative groups in STEM education. Students at different levels and disciplines, STEM and liberal arts, will be participating in the research on privacy and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,机器学习已经变得越来越突出,在从图像和语音处理到疾病诊断的各个领域都有应用。尽管机器学习技术取得了巨大的成功,但仍需要收集大量数据并用于训练机器学习模型。敏感数据的隐私已经成为一个大问题。现有的努力仍是初步的,巨大的挑战仍有待解决。至关重要的是,更强的隐私保护保证往往会牺牲机器学习模型的重要属性,例如预测效用和公平性,这可能是不可取的或完全不可接受的。该项目为机器学习系统开发了一个统一的隐私保护框架,该框架全面考虑了计算隐私与机器学习的几个关键属性(包括效用、公平性和分布式学习)之间的最佳权衡。该项目将提供一套全面的工具,在不同情况下保护真实世界机器学习应用程序的数据隐私。隐私保护技术将对各行各业使用的机器学习系统产生变革性的影响,使企业和医院在享受大数据机器学习技术优势的同时,在相应的法规下保护数据隐私。本研究项目从隐私-效用权衡、隐私-公平关系、隐私-安全关系、隐私-安全关系、隐私-公平关系、隐私-安全关系、隐私-安全关系分布式学习中的隐私问题,到学习后的隐私保护。该项目开发的框架深深植根于严格的优化框架,通常伴随着理论保证,并得到元学习,对抗学习和联邦学习等尖端算法工具的帮助。此外,该框架进行了以下方法的创新:差异隐私量身定制的学习问题;定制隐私解决协作学习中的异质性;通过unlearning学习模型的隐私保护;巩固隐私和学习的公平性。这些努力将大大增强差异隐私的实用性和可扩展性。该项目将在各种现实医学应用中进行系统评估,这些工具将随时用于应对医学研究中的关键挑战。其成果将纳入本科和研究生级别的多门课程中。研究成果将通过开源软件发布和研讨会,本科生研究的参与以及K-12教育的推广广泛而全面地传播,重点关注STEM教育中的少数民族和代表性不足的群体。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning enabled subgroup analysis with real-world data to inform clinical trial eligibility criteria design.
  • DOI:
    10.1038/s41598-023-27856-1
  • 发表时间:
    2023-01-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Patient Similarity Learning with Selective Forgetting
通过选择性遗忘进行患者相似性学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Wang其他文献

Probing the Galactic halo with RR lyrae stars − III. The chemical and kinematic properties of the stellar halo
用天琴座 RR 星探测银河晕 – III。
Efficacy and safety of laser therapy for the treatment of retinopathy of prematurity
激光治疗早产儿视网膜病变的疗效和安全性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Fei Wang;Linna Hao
  • 通讯作者:
    Linna Hao
Application of Augmented Reality (AR) Technologies in inhouse Logistics
增强现实(AR)技术在内部物流中的应用
  • DOI:
    10.1051/e3sconf/202014502018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Wang;Fei Wang;Wei Song;Shunhu Su
  • 通讯作者:
    Shunhu Su
TheWNT/beta-catenin pathway is involved in the anti-adipogenic activity ofcerebrosides from the sea cucumber Cucumaria frondosa
WNT/β-连环蛋白途径参与海参脑苷脂的抗脂肪形成活性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Hui Xu;Fei Wang;Jingfeng Wang;Jie Xu;Yuming Wang;Changhu Xue
  • 通讯作者:
    Changhu Xue
Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of PbnAun (n ¼ 2–12) clusters: a DFT study
对 PbnAun (n × 2−12) 团簇的结构、相对稳定、电子和气体传感特性的理论见解:一项 DFT 研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gaofeng Li;Xiumin Chen;Zhiqiang Zhou;Fei Wang;Hongwei Yang;Jia Yang;Baoqiang Xu;Bin Yang;Dachun Liu
  • 通讯作者:
    Dachun Liu

Fei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Wang', 18)}}的其他基金

Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
  • 批准号:
    2320328
  • 财政年份:
    2023
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
  • 批准号:
    2301392
  • 财政年份:
    2023
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
  • 批准号:
    2027970
  • 财政年份:
    2020
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
  • 批准号:
    1833794
  • 财政年份:
    2018
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences
职业:离散时间事件序列的可解释深度建模
  • 批准号:
    1750326
  • 财政年份:
    2018
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
  • 批准号:
    1716432
  • 财政年份:
    2017
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
  • 批准号:
    1650723
  • 财政年份:
    2016
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
  • 批准号:
    0953267
  • 财政年份:
    2010
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
  • 批准号:
    0230108
  • 财政年份:
    2003
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
SBIR PHASE I: Advanced Membrane for Waste Metal Recovery
SBIR 第一阶段:用于废金属回收的先进膜
  • 批准号:
    9561754
  • 财政年份:
    1996
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324770
  • 财政年份:
    2023
  • 资助金额:
    $ 26.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了