CAREER: Interpretable Deep Modeling of Discrete Time Event Sequences

职业:离散时间事件序列的可解释深度建模

基本信息

项目摘要

Discrete Time Event Sequences (DTES) are ordered event sequences with a concrete timestamp associated with each event. DTES are ubiquitous in our daily life. One representative example is patient electronic health records. Computational modeling of DTES can reveal the hidden event evolving mechanisms and improve the performance of endpoint analytical tasks such as sequence forecasting and grouping. Conventional approaches for analyzing DTES are typically based on strong statistical assumptions and may not work well in practice. Motivated by the recent empirical success of deep learning methods in various application domains, the objective of this project is to develop interpretable deep learning approaches for modeling DTES. This project validates the utility of the developed algorithms in various medical applications. It incorporates the resulting research outcomes into curriculum development and courses, to train a new generation of machine learning and data mining practitioners. In addition, special training opportunities are provided to high school students and community college students for a broader education of modern data analysis techniques.This project consists of three synergistic research thrusts. First, it develops a series of approaches for integrating external domain knowledge into the modeling process. This guarantees the learned models align well with the domain knowledge and at the same time provides effective regularizations to avoid overfitting. Second, it devises approaches based on mimic learning and pattern dissection to interpret the knowledge hidden in the learned models. This makes the learned models much more practical and reusable. Third, effective model and data sharing mechanisms are developed to transfer the knowledge across similar learning tasks. This maximizes the utilizations of the available samples for each task by leveraging the task relationships. Two key problems in medical domain, hospital readmission and disease phenotyping, are used as the target applications for validating the proposed approaches based on several real-world large-scale patient electronic health record data sets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离散时间事件序列(DTES)是有序的事件序列,每个事件都有一个具体的时间戳。DTES在我们的日常生活中无处不在。一个代表性的例子是患者电子健康记录。DTES的计算建模可以揭示隐藏事件的演化机制,提高序列预测和分组等端点分析任务的性能。用于分析DTES的传统方法通常基于强统计假设,并且在实践中可能不起作用。受最近深度学习方法在各个应用领域的经验成功的启发,该项目的目标是开发可解释的深度学习方法来建模DTES。该项目验证了所开发的算法在各种医疗应用中的实用性。它将由此产生的研究成果纳入课程开发和课程,以培养新一代机器学习和数据挖掘从业人员。此外,还为高中生和社区大学生提供特别培训机会,以便更广泛地教育现代数据分析技术。首先,它开发了一系列的方法集成外部领域的知识到建模过程中。这保证了学习的模型与领域知识很好地对齐,同时提供了有效的正则化以避免过拟合。其次,设计了基于模仿学习和模式分解的方法来解释隐藏在学习模型中的知识。这使得学习的模型更加实用和可重用。第三,开发有效的模型和数据共享机制,以在类似的学习任务之间转移知识。这通过利用任务关系来最大化每个任务的可用样本的利用率。在医学领域的两个关键问题,医院读取使命和疾病表型,被用来作为目标应用程序验证所提出的方法的基础上,几个现实世界的大规模患者电子健康记录datasets.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering Pattern Formation of Information Flow
Order-Preserving Metric Learning for Mining Multivariate Time Series
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders
  • DOI:
    10.24963/ijcai.2018/483
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tengfei Ma;Cao Xiao;Jiayu Zhou;Fei Wang
  • 通讯作者:
    Tengfei Ma;Cao Xiao;Jiayu Zhou;Fei Wang
Heterogeneous Hyper-Network Embedding
Dynamical Origins of Distribution Functions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Wang其他文献

Probing the Galactic halo with RR lyrae stars − III. The chemical and kinematic properties of the stellar halo
用天琴座 RR 星探测银河晕 – III。
Efficacy and safety of laser therapy for the treatment of retinopathy of prematurity
激光治疗早产儿视网膜病变的疗效和安全性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Fei Wang;Linna Hao
  • 通讯作者:
    Linna Hao
Application of Augmented Reality (AR) Technologies in inhouse Logistics
增强现实(AR)技术在内部物流中的应用
  • DOI:
    10.1051/e3sconf/202014502018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Wang;Fei Wang;Wei Song;Shunhu Su
  • 通讯作者:
    Shunhu Su
TheWNT/beta-catenin pathway is involved in the anti-adipogenic activity ofcerebrosides from the sea cucumber Cucumaria frondosa
WNT/β-连环蛋白途径参与海参脑苷脂的抗脂肪形成活性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Hui Xu;Fei Wang;Jingfeng Wang;Jie Xu;Yuming Wang;Changhu Xue
  • 通讯作者:
    Changhu Xue
Theoretical insights into the structural, relative stable, electronic, and gas sensing properties of PbnAun (n ¼ 2–12) clusters: a DFT study
对 PbnAun (n × 2−12) 团簇的结构、相对稳定、电子和气体传感特性的理论见解:一项 DFT 研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gaofeng Li;Xiumin Chen;Zhiqiang Zhou;Fei Wang;Hongwei Yang;Jia Yang;Baoqiang Xu;Bin Yang;Dachun Liu
  • 通讯作者:
    Dachun Liu

Fei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Wang', 18)}}的其他基金

Finite Temperature Simulation of Non-Markovian Quantum Dynamics in Condensed Phase using Quantum Computers
使用量子计算机对凝聚相非马尔可夫量子动力学进行有限温度模拟
  • 批准号:
    2320328
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
ERI: Progressive Formation and Collapse Mechanisms of Sinkholes Caused by Defective Buried Pipes
ERI:埋地管道缺陷造成天坑的渐进形成和塌陷机制
  • 批准号:
    2301392
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212175
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
RAPID: Understanding the Transmission and Prevention of COVID-19 with Biomedical Knowledge Engineering
RAPID:利用生物医学知识工程了解 COVID-19 的传播和预防
  • 批准号:
    2027970
  • 财政年份:
    2020
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Student Travel Grant: Sixth IEEE International Conference on Healthcare Informatics (ICHI 2018)
学生旅费补助金:第六届 IEEE 国际医疗信息学会议 (ICHI 2018)
  • 批准号:
    1833794
  • 财政年份:
    2018
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Comprehensive Heterogeneous Response Regression from Complex Data
III:小:协作研究:复杂数据的综合异质响应回归
  • 批准号:
    1716432
  • 财政年份:
    2017
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
EAGER: Patient Similarity Learning with Massive Clinical Data and Its Applications in Cohort Identification
EAGER:海量临床数据的患者相似性学习及其在队列识别中的应用
  • 批准号:
    1650723
  • 财政年份:
    2016
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
CAREER: The molecular mechanisms governing fate decisions of human embryonic stem cells
职业:控制人类胚胎干细胞命运决定的分子机制
  • 批准号:
    0953267
  • 财政年份:
    2010
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Star Polymer Micelles as Targeted Drug Delivery System
SBIR 第一阶段:星形聚合物胶束作为靶向药物输送系统
  • 批准号:
    0230108
  • 财政年份:
    2003
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
SBIR PHASE I: Advanced Membrane for Waste Metal Recovery
SBIR 第一阶段:用于废金属回收的先进膜
  • 批准号:
    9561754
  • 财政年份:
    1996
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
  • 批准号:
    24K18602
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
  • 批准号:
    2302274
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Interpretable Deep Learning Models for Analysis of Longitudinal 3D Mammography Screenings
用于分析纵向 3D 乳房 X 光检查的可解释深度学习模型
  • 批准号:
    10667745
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205417
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Knockoff statistics-driven interpretable deep learning models for uncovering potential biomarkers for COVID-19 risk prediction
山寨统计驱动的可解释深度学习模型,用于发现潜在的 COVID-19 风险预测生物标志物
  • 批准号:
    468265
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Fellowship Programs
Multi-omic single-cell, electronic health record, and biomedical knowledge graph data integration using interpretable deep learning approaches
使用可解释的深度学习方法进行多组学单细胞、电子健康记录和生物医学知识图数据集成
  • 批准号:
    576153-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Alliance Grants
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
  • 批准号:
    10698166
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
Interpretable Deep Forecasting of Hazardous Substance Use during High School
高中期间有害物质使用的可解释深度预测
  • 批准号:
    10706556
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了