CAREER: Modeling and Inference for Large Scale Spatio-Temporal Data

职业:大规模时空数据的建模和推理

基本信息

  • 批准号:
    1651565
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Key sustainability challenges, such as poverty mitigation, climate change, and food security, involve global phenomena that are unique in scale and complexity. Our global sensing capabilities - from remote sensing to crowdsourcing - are becoming increasingly economical and accurate. These recent technological developments are creating new spatio-temporal data streams that contain a wealth of information relevant to sustainable development goals. Actionable insights, however, cannot be easily extracted because the sheer size and unstructured nature of the data preclude traditional analysis techniques. This five-year career-development plan is an integrated research, education, and outreach program focused on developing new AI techniques to extract actionable insights from large-scale spatio-temporal data. These techniques have the potential to yield accurate, inexpensive, and highly scalable models to inform research and policy.The research goal of this project is to develop new modeling and algorithmic frameworks to help address global sustainability challenges involving spatio-temporal data. This research will develop new predictive models of complex spatio-temporal phenomena integrating in unique ways ideas from graphical models and representation learning, improving their overall performance. New approaches to learn from unlabeled data exploiting various forms of prior domain knowledge, including spatio-temporal dependencies and relationships between different data modalities, will be developed. To learn models and make predictions at scale, this project will also develop new scalable probabilistic inference methods based on the use of random projections to reduce the dimensionality of probabilistic models while preserving their key properties. The techniques developed will be made available to both academia and industry through open-source software, and will enable computationally feasible approaches for analyzing large spatio-temporal datasets and for modeling global scale phenomena. Predictions and data products produced by this project will enable new analyses and advance sustainability disciplines. Results will be disseminated widely through scientific articles, research seminars, and conference presentations to maximize the benefits to the scientific community. Educational and outreach efforts will include the involvement of undergraduate students undertaking independent research projects, a website describing research bridging computation and, and a summer outreach program aimed at introducing under-represented high-school students to computer science and artificial intelligence.
关键的可持续性挑战,如减贫、气候变化和粮食安全,涉及规模和复杂性独特的全球现象。我们的全球传感能力--从遥感到众包--正变得越来越经济和准确。这些最新的技术发展正在创造新的时空数据流,其中包含与可持续发展目标有关的大量信息。然而,由于数据的庞大规模和非结构化性质,无法使用传统的分析技术,因此无法轻松提取可操作的见解。这个为期五年的职业发展计划是一个综合的研究,教育和推广计划,专注于开发新的人工智能技术,从大规模时空数据中提取可操作的见解。这些技术有可能产生准确,廉价和高度可扩展的模型,为研究和政策提供信息。本项目的研究目标是开发新的建模和算法框架,以帮助解决涉及时空数据的全球可持续性挑战。这项研究将开发复杂时空现象的新预测模型,以独特的方式整合图形模型和表示学习的想法,提高其整体性能。将开发利用各种形式的先前领域知识,包括时空依赖性和不同数据模式之间的关系,从未标记数据中学习的新方法。为了学习模型并进行大规模预测,该项目还将开发新的可扩展概率推理方法,该方法基于使用随机投影来降低概率模型的维度,同时保留其关键属性。所开发的技术将通过开源软件提供给学术界和工业界,并将使计算上可行的方法,用于分析大型时空数据集和建模全球尺度的现象。该项目产生的预测和数据产品将有助于进行新的分析并推进可持续性学科。研究结果将通过科学文章、研究研讨会和会议报告广泛传播,以最大限度地造福科学界。教育和推广工作将包括本科生参与独立的研究项目,一个描述研究桥接计算的网站,以及一个旨在向代表性不足的高中生介绍计算机科学和人工智能的暑期推广计划。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ButterflyFlow: Building Invertible Layers with Butterfly Matrices
  • DOI:
    10.48550/arxiv.2209.13774
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenlin Meng;Linqi Zhou;Kristy Choi;Tri Dao;Stefano Ermon
  • 通讯作者:
    Chenlin Meng;Linqi Zhou;Kristy Choi;Tri Dao;Stefano Ermon
Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yutong He;Dingjie Wang;Nicholas Lai;William Zhang;Chenlin Meng;M. Burke;D. Lobell;Stefano Ermon-Stefano
  • 通讯作者:
    Yutong He;Dingjie Wang;Nicholas Lai;William Zhang;Chenlin Meng;M. Burke;D. Lobell;Stefano Ermon-Stefano
Generative Modeling by Estimating Gradients of the Data Distribution
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Song;Stefano Ermon
  • 通讯作者:
    Yang Song;Stefano Ermon
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
  • DOI:
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Grover;Stefano Ermon
  • 通讯作者:
    Aditya Grover;Stefano Ermon
Negative Data Augmentation
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhishek Sinha;Kumar Ayush;Jiaming Song;Burak Uzkent;Hongxia Jin;Stefano Ermon
  • 通讯作者:
    Abhishek Sinha;Kumar Ayush;Jiaming Song;Burak Uzkent;Hongxia Jin;Stefano Ermon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefano Ermon其他文献

Playing games against nature: optimal policies for renewable resource allocation
与自然博弈:可再生资源配置的最优政策
Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
通过潜在全局演化对偏微分方程的正向和逆向问题进行不确定性量化
  • DOI:
    10.48550/arxiv.2402.08383
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec
  • 通讯作者:
    J. Leskovec
SMT-Aided Combinatorial Materials Discovery
SMT 辅助组合材料发现
Variable Elimination in the Fourier Domain
傅里叶域中的变量消除
Towards transferable building damage assessment via unsupervised single-temporal change adaptation
  • DOI:
    10.1016/j.rse.2024.114416
  • 发表时间:
    2024-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Zhuo Zheng;Yanfei Zhong;Liangpei Zhang;Marshall Burke;David B. Lobell;Stefano Ermon
  • 通讯作者:
    Stefano Ermon

Stefano Ermon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefano Ermon', 18)}}的其他基金

AitF: Collaborative Research: Efficient High-Dimensional Integration using Error-Correcting Codes
AitF:协作研究:使用纠错码进行高效高维积分
  • 批准号:
    1733686
  • 财政年份:
    2017
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
EAGER: IIS: Empowering Probabilistic Reasoning with Random Projections
EAGER:IIS:通过随机投影增强概率推理
  • 批准号:
    1649208
  • 财政年份:
    2016
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
  • 批准号:
    2326893
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling, inference and risk aggregation for dependent insurance losses
家属保险损失的建模、推理和风险汇总
  • 批准号:
    RGPIN-2019-04190
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150571
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
  • 批准号:
    2150596
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Discovery Grants Program - Individual
Traffic safety margin inference via machine learning for 3D spatial modeling
通过 3D 空间建模的机器学习进行交通安全裕度推断
  • 批准号:
    572807-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Alliance Grants
Simulation of nucleation based on Bayesian inference and surrogate modeling
基于贝叶斯推理和代理建模的成核模拟
  • 批准号:
    22K18875
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Modeling and Inference for Data with Network Dependency
具有网络依赖性的数据的建模和推理
  • 批准号:
    2210402
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了