EAGER: IIS: Empowering Probabilistic Reasoning with Random Projections
EAGER:IIS:通过随机投影增强概率推理
基本信息
- 批准号:1649208
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Autonomous agents such as self-driving cars are required to act intelligently and adaptively in increasingly complex and uncertain real-world environments. To cope with the uncertainty and ambiguity of real world domains, AI systems rely heavily on statistical approaches. To make sensible decisions under uncertainty, agents need to reason probabilistically about their environments. Probabilistic reasoning, however, is known to be computationally very difficult in the worst case. While significant progress has been made over the past decades, many complex problems remain out of reach. This project aims to develop a new family of algorithms for reasoning under uncertainty. These novel techniques have the potential to provide more efficient algorithms for decision-making, learning and inference with improved theoretical guarantees on the accuracy. These techniques will be applicable in a wide range of domains, including medical diagnosis, information extraction, computer vision, and robotics.This research project will develop a new family of algorithms for reasoning under uncertainty based on random projections. Random projections have played a key role in scaling up data mining and database systems. While drastically reducing computational cost, they also provide principled approximations. This research will explore the use of random projections based on universal hashing schemes in the context of probabilistic reasoning. The project will develop new techniques for learning and decision making under uncertainty problems. Specifically, new frameworks and algorithms with improved theoretical guarantees and practical performance will be developed. In order to provide efficient reasoning algorithms, the use of random projections will be considered in combination with a range of existing techniques, including modern optimization, variational, and sampling methods. A key focus will be to develop practical techniques and scale-up to real-world domains. The techniques developed will be made available to both academia and industry through open-source software. Educational and outreach efforts will include the involvement of undergraduate students undertaking independent research projects.
自动驾驶汽车等自主智能体需要在日益复杂和不确定的现实世界环境中智能和自适应地行动。为了科普真实的世界领域的不确定性和模糊性,人工智能系统严重依赖于统计方法。为了在不确定性下做出明智的决策,智能体需要对他们的环境进行概率推理。然而,在最坏的情况下,概率推理在计算上是非常困难的。虽然在过去几十年中取得了重大进展,但许多复杂的问题仍然无法解决。这个项目的目的是开发一个新的家庭的算法推理不确定性。这些新的技术有可能提供更有效的算法,决策,学习和推理,提高理论保证的准确性。这些技术将应用于广泛的领域,包括医疗诊断,信息提取,计算机视觉和机器人。本研究项目将开发一个新的家庭的算法,在不确定性的基础上随机投影推理。随机投影在数据挖掘和数据库系统的扩展中发挥了关键作用。在大幅降低计算成本的同时,它们还提供了原则性的近似。本研究将探讨在概率推理的背景下使用基于通用散列方案的随机预测。该项目将开发在不确定性问题下进行学习和决策的新技术。具体而言,将开发具有改进的理论保证和实际性能的新框架和算法。为了提供有效的推理算法,随机投影的使用将被认为是与一系列现有的技术,包括现代优化,变分和抽样方法相结合。一个关键的重点将是开发实用技术和扩大到现实世界的领域。 所开发的技术将通过开放源码软件提供给学术界和工业界。教育和推广工作将包括让本科生参与独立的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Ermon其他文献
Playing games against nature: optimal policies for renewable resource allocation
与自然博弈:可再生资源配置的最优政策
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Stefano Ermon;J. Conrad;C. Gomes;B. Selman - 通讯作者:
B. Selman
Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
通过潜在全局演化对偏微分方程的正向和逆向问题进行不确定性量化
- DOI:
10.48550/arxiv.2402.08383 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec - 通讯作者:
J. Leskovec
SMT-Aided Combinatorial Materials Discovery
SMT 辅助组合材料发现
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Stefano Ermon;Ronan Le Bras;C. Gomes;B. Selman;R. B. Dover - 通讯作者:
R. B. Dover
Variable Elimination in the Fourier Domain
傅里叶域中的变量消除
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yexiang Xue;Stefano Ermon;Ronan Le Bras;C. Gomes;B. Selman - 通讯作者:
B. Selman
Towards transferable building damage assessment via unsupervised single-temporal change adaptation
- DOI:
10.1016/j.rse.2024.114416 - 发表时间:
2024-12-15 - 期刊:
- 影响因子:
- 作者:
Zhuo Zheng;Yanfei Zhong;Liangpei Zhang;Marshall Burke;David B. Lobell;Stefano Ermon - 通讯作者:
Stefano Ermon
Stefano Ermon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Ermon', 18)}}的其他基金
CAREER: Modeling and Inference for Large Scale Spatio-Temporal Data
职业:大规模时空数据的建模和推理
- 批准号:
1651565 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Efficient High-Dimensional Integration using Error-Correcting Codes
AitF:协作研究:使用纠错码进行高效高维积分
- 批准号:
1733686 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
基于IIS/TOR信号途径探究蜂王浆外泌体lncRNA调控西方蜜蜂级型分化的分子机制
- 批准号:32302811
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IIS/FoxO通路调控Argopecten属扇贝寿命的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
IIS/TOR通路调控蜜蜂工蜂生殖发育的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以IIS通路为中心的Zn2+胁迫对黑水虻幼虫生长影响的氧化应激机制研究
- 批准号:31860618
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于IIS通路探讨六味地黄丸“三补”药组对AD模型秀丽线虫的神经保护作用
- 批准号:81704132
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
- 批准号:
2230466 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
- 批准号:
2230467 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219615 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III Towards Fair Outlier Detection
协作研究:IIS-III 迈向公平的异常值检测
- 批准号:
2310482 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318611 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
- 批准号:
2310481 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310114 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219614 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318612 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant