CAREER: Geometric Techniques for Big Data Medical Imaging

职业:大数据医学成像的几何技术

基本信息

  • 批准号:
    1651825
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Medical imaging has benefited greatly from advances in signal and image processing, which have enabled better data acquisition, superior reconstruction and improved analysis of massive amounts of imaging data. With improving resolutions and the push for comprehensive diagnosis, medical imaging faces new challenges; including bigger data sizes, longer scan durations, and susceptibility to artifacts, such as patient motion. Hence, it is imperative that these large-scale datasets are processed and analyzed efficiently in the presence of systematic and physiological imperfections, along with constraints on diagnostic ability and patient throughput.This project builds a cross-disciplinary research framework to provide theoretical, algorithmic and application developments based on geometric methods to characterize the limits and to improve the state of medical imaging reconstruction and analysis. This research comprises three complementary thrusts: rate-distortion characterization of learning algorithms; theoretical guarantees and algorithms for phase retrieval of low-dimensional models; and optimization strategies on low-dimensional manifolds for a class of parameter estimation problems. Each of these thrusts is complemented with applications in medical imaging, with tremendous potential for translational impact in the US healthcare system, including improved diagnosis and throughput in health-care applications. Broader educational impacts of this project result from integration of the research to graduate and undergraduate curriculum; outreach to the local community and to under-privileged K-12 students.
医学成像已经极大地受益于信号和图像处理的进步,这使得能够实现更好的数据采集、上级重建和改进的大量成像数据的分析。随着分辨率的提高和对全面诊断的推动,医学成像面临着新的挑战;包括更大的数据量,更长的扫描持续时间和对伪影的敏感性,如患者运动。因此,在存在系统和生理缺陷的情况下,沿着诊断能力和患者吞吐量的限制,对这些大规模数据集进行有效的处理和分析势在必行。本项目构建了一个跨学科的研究框架,提供基于几何方法的理论,算法和应用开发,以表征限制并改善医学成像重建和分析的状态。本研究包括三个互补的推力:率失真表征的学习算法;理论保证和算法的相位检索的低维模型;和优化策略的低维流形上的一类参数估计问题。每一个重点都与医学成像应用相辅相成,对美国医疗保健系统产生巨大的转化影响,包括改善医疗保健应用中的诊断和吞吐量。该项目的更广泛的教育影响来自研究与研究生和本科生课程的整合;与当地社区和弱势K-12学生的联系。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction.
SPIRiT-RAKI: Scan-Specific Self-Consistency Neural Networks for Reconstruction Arbitrary k-space
SPIRiT-RAKI:用于重建任意 k 空间的扫描特定自洽神经网络
Application of a Scan-Specific Deep Learning Reconstruction to Multiband/SMS Imaging
扫描特定深度学习重建在多波段/SMS 成像中的应用
Highly-Accelerated Simultaneous Multi-Slice CMR Using Outer Volume Suppression: Time-Efficient Characterization of Cardiac Function in A Single Breath-hold
使用外部容积抑制的高加速同步多切片 CMR:单次屏气中心脏功能的省时表征
Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement: An overview from a signal processing perspective.
  • DOI:
    10.1109/msp.2021.3119273
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Akcakaya, Mehmet;Yaman, Burhaneddin;Chung, Hyungjin;Ye, Jong Chul
  • 通讯作者:
    Ye, Jong Chul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Akcakaya其他文献

Motion correction for free breathing quantitative myocardial t<sub>2</sub> mapping: impact on reproducibility and spatial variability
  • DOI:
    10.1186/1532-429x-17-s1-w5
  • 发表时间:
    2015-02-03
  • 期刊:
  • 影响因子:
  • 作者:
    Sébastien Roujol;Tamer A Basha;Sebastian Weingartner;Mehmet Akcakaya;Sophie Berg;Warren J Manning;Reza Nezafat
  • 通讯作者:
    Reza Nezafat
Selection of sampling points for saturation recovery based myocardial T<sub>1</sub> mapping
  • DOI:
    10.1186/1532-429x-16-s1-w32
  • 发表时间:
    2014-01-16
  • 期刊:
  • 影响因子:
  • 作者:
    Mehmet Akcakaya;Sebastian Weingartner;Warren J Manning;Reza Nezafat
  • 通讯作者:
    Reza Nezafat
Heart-rate independent myocardial T1-mapping using combined saturation and inversion preparation pulses
  • DOI:
    10.1186/1532-429x-15-s1-p46
  • 发表时间:
    2013-01-30
  • 期刊:
  • 影响因子:
  • 作者:
    Sebastian Weingärtner;Mehmet Akcakaya;Sophie Berg;Kraig V Kissinger;Warren J Manning;Reza Nezafat
  • 通讯作者:
    Reza Nezafat
Improved 3D late gadolinium enhancement MRI for patients with arrhythmia or heart rate variability
  • DOI:
    10.1186/1532-429x-15-s1-p29
  • 发表时间:
    2013-01-30
  • 期刊:
  • 影响因子:
  • 作者:
    Sebastian Weingärtner;Mehmet Akcakaya;Sophie Berg;Kraig V Kissinger;Warren J Manning;Reza Nezafat
  • 通讯作者:
    Reza Nezafat
Improved efficiency for respiratory motion compensation in three-dimensional flow measurements
  • DOI:
    10.1186/1532-429x-15-s1-p30
  • 发表时间:
    2013-01-30
  • 期刊:
  • 影响因子:
  • 作者:
    Mehmet Akcakaya;Praveen Gulaka;Tamer A Basha;Thomas H Hauser;Warren J Manning;Reza Nezafat
  • 通讯作者:
    Reza Nezafat

Mehmet Akcakaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
  • 批准号:
    2237288
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Towards The First Global Indoor Positioning System Using Geometric Modeling and Advanced Artificial Intelligence Techniques
迈向第一个使用几何建模和先进人工智能技术的全球室内定位系统
  • 批准号:
    22K12011
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric techniques in kinematics of robots
机器人运动学中的代数几何技术
  • 批准号:
    1965756
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了