EAGER: Vision-Based Activity Forecasting by Mining Temporal Causalities
EAGER:通过挖掘时间因果关系进行基于视觉的活动预测
基本信息
- 批准号:1651902
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores methodologies for forecasting long-term human group activity from videos. Forecasting future activities in real-world videos is an emerging computer vision problem with important applications in visual surveillance for security. This project systematically and rigorously formulates long-term group activity forecasting problem as causalities of visual entities, and designs visual intelligence systems using machine learning and data mining methods. The research considers multiple visual identities of different types, models their interactions, and mines the sequential causalities between these visual entities in videos. These causalities are used for forecasting future group and individual activities. The project creates new mathematical models for describing and simplifying understanding statistical properties of human activity videos. The project leads to important and timely technology that can help to design future video analysis systems with optimal performance in understanding and searching activities from videos. The project tightly integrates research and education activities for the purpose of providing young researchers with project-based learning opportunities in an interdisciplinary environment that offers exceptional professional and personal growth opportunities. This research discovers complex causality patterns between visual entities from noisy visual data, in order to gain rich and useful knowledge for the forecasting of future visual activities. This essentially bridges the gap between human understandable visual semantics and high-dimensional noisy visual data. The research enables to efficiently capture interactions between multiple visual entities and their temporal causalities, and provides rich knowledge for guiding long-term group activity forecasting. The project also explores several innovative ways to leverage rich sequential context and builds progress level-invariant features. This naturally enriches feature representations from temporally partially observed data, and allows building more time efficient activity prediction machines. Moreover, the project develops an effective forecasting model that can elegantly utilize causalities mined from visual data for long-term forecasting. The developed technologies can lead to new intelligent systems.
这个项目探索了从视频中预测长期人类群体活动的方法。预测真实世界视频中的未来活动是一个新兴的计算机视觉问题,在安全视觉监控中有着重要的应用。本项目系统而严谨地将长期群体活动预测问题描述为视觉实体的因果关系,并利用机器学习和数据挖掘方法设计视觉智能系统。该研究考虑了不同类型的多个视觉身份,对它们之间的交互进行建模,并挖掘视频中这些视觉实体之间的顺序因果关系。这些因果关系被用来预测未来的群体和个人活动。该项目创建了新的数学模型,用于描述和简化对人类活动视频的统计属性的理解。该项目带来了重要和及时的技术,可以帮助设计未来的视频分析系统,在理解和搜索视频活动方面具有最佳性能。该项目将研究和教育活动紧密结合在一起,旨在为年轻的研究人员提供基于项目的学习机会,在一个提供非凡的职业和个人成长机会的跨学科环境中。本研究从噪声视觉数据中发现视觉实体之间复杂的因果关系模式,为未来视觉活动的预测提供丰富而有用的知识。这在本质上弥合了人类可理解的视觉语义和高维噪声视觉数据之间的差距。该研究能够有效地捕捉多个视觉实体之间的相互作用及其时间因果关系,并为指导长期的群体活动预测提供丰富的知识。该项目还探索了几种创新的方法来利用丰富的顺序上下文并构建进度级别不变的功能。这自然地丰富了来自时间部分观察数据的特征表示,并允许构建更具时间效率的活动预测机器。此外,该项目还开发了一种有效的预测模型,可以优雅地利用从视觉数据中挖掘的因果关系进行长期预测。所开发的技术可以带来新的智能系统。
项目成果
期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Early Recognition of 3D Human Actions
- DOI:10.1145/3131344
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Sheng Li;Kang Li;Y. Fu
- 通讯作者:Sheng Li;Kang Li;Y. Fu
Learning Consensus Representation for Weak Style Classification
- DOI:10.1109/tpami.2017.2771766
- 发表时间:2018-12-01
- 期刊:
- 影响因子:23.6
- 作者:Jiang, Shuhui;Shao, Ming;Fu, Yun
- 通讯作者:Fu, Yun
Simultaneous Clustering and Ensemble
- DOI:10.1609/aaai.v31i1.10720
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:Zhiqiang Tao;Hongfu Liu;Y. Fu
- 通讯作者:Zhiqiang Tao;Hongfu Liu;Y. Fu
Consensus Guided Multi-View Clustering
- DOI:10.1145/3182384
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Hongfu Liu;Y. Fu
- 通讯作者:Hongfu Liu;Y. Fu
Multi-View Low-Rank Analysis with Applications to Outlier Detection
- DOI:10.1145/3168363
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Sheng Li;Ming Shao;Y. Fu
- 通讯作者:Sheng Li;Ming Shao;Y. Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Fu其他文献
Robust Analysis and Weighting on MFCC Components for Speech Recognition and Speaker Identification
用于语音识别和说话人识别的 MFCC 组件的稳健分析和加权
- DOI:
10.1109/icme.2007.4284618 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Xi Zhou;Yun Fu;Ming Liu;M. Hasegawa;Thomas S. Huang - 通讯作者:
Thomas S. Huang
Supplementary Material for Uncovering the Missing Pattern: Unified Framework Towards Trajectory Imputation and Prediction
发现缺失模式的补充材料:轨迹插补和预测的统一框架
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yi Xu;Armin Bazarjani;Hyung;Chiho Choi;Yun Fu - 通讯作者:
Yun Fu
Research on The Static Robust and Vulnerability of Internet on The Level of Isp
Isp级互联网静态鲁棒性与脆弱性研究
- DOI:
10.2991/iccasm.2012.48 - 发表时间:
2012 - 期刊:
- 影响因子:2.6
- 作者:
Yun Fu;H. Zhao;H. Yang - 通讯作者:
H. Yang
Laplacian Affinity Propagation for Semi-Supervised Object Classification
半监督对象分类的拉普拉斯亲和力传播
- DOI:
10.1109/icip.2007.4378923 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Yun Fu;Zhuo Li;Xi Zhou;Thomas S. Huang - 通讯作者:
Thomas S. Huang
Shilnikov chaos in a buck-boost converter governed by 3D non-smooth systems
由三维非光滑系统控制的升压-降压转换器中的希尔尼科夫混沌
- DOI:
10.1016/j.chaos.2025.116775 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:5.600
- 作者:
Wenjing Xu;Kai Lu;Ting Yang;Yun Fu - 通讯作者:
Yun Fu
Yun Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Fu', 18)}}的其他基金
I-Corps: Multi-Cue Facial Restoration (McFAR) for Recognition and Identification
I-Corps:用于识别和识别的多线索面部修复 (McFAR)
- 批准号:
2224289 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
I-Corps: Facial image analysis system
I-Corps:面部图像分析系统
- 批准号:
1635174 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CPS:Medium:Quantitative Visual Sensing of Dynamic Behaviors for Home-based Progressive Rehabilitation
CPS:中:基于家庭渐进式康复的动态行为的定量视觉感知
- 批准号:
1314484 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CPS:Medium:Quantitative Visual Sensing of Dynamic Behaviors for Home-based Progressive Rehabilitation
CPS:中:基于家庭渐进式康复的动态行为的定量视觉感知
- 批准号:
1135660 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
- 批准号:
23KF0241 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Evolutionary study of primate olfaction, taste and color-vision sensor genes by targeted capture and cell-culture-based functional assay
通过靶向捕获和基于细胞培养的功能测定对灵长类动物嗅觉、味觉和色觉传感器基因的进化研究
- 批准号:
23H02561 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of high-speed random access vision principle based on mirror array
基于镜面阵列的高速随机存取视觉原理研制
- 批准号:
23K18473 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
- 批准号:
23H01487 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
- 批准号:
2331763 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Vision-based pain detection in masked faces
基于视觉的蒙面面部疼痛检测
- 批准号:
572495-2022 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
University Undergraduate Student Research Awards
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
- 批准号:
RGPIN-2017-05638 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Developing an Innovative Platform for Modeling Active Road User Interactions and Safety: Integration of Computer Vision, Agent-based, and Machine Learning Models
开发用于对主动道路用户交互和安全进行建模的创新平台:计算机视觉、基于代理和机器学习模型的集成
- 批准号:
RGPIN-2019-06688 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual