CAREER: Maximizing Energy Efficiency with Statistical Performance and Skin Temperature Quality of Service Guarantee for Handheld Platforms
职业:通过手持平台的统计性能和表面温度服务质量保证最大限度地提高能源效率
基本信息
- 批准号:1652132
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Smartphones reached almost 4 billion world-wide subscriptions in 2015 and have become our daily companion providing both high capacity computing, as well as personalized computing. For smartphones, user satisfaction determines the success or failure for a particular platform. The top ranked factor of user satisfaction is performance, which can be experienced by users through computation performance and battery performance. Therefore, smartphone designs must achieve balance between performance, temperature and energy management in a coordinated manner to maximize user satisfaction. Performance as measured by mobile application execution time has long been assumed to be a deterministic quantity. In reality, execution times vary substantially, depending on the characteristics of data inputs and the varying states of the system. Furthermore, the device surface temperature is a unique constraint for handheld devices. It is tightly coupled with the location of the major heat-generating source within a smartphone. Thus, a smartphone's energy efficiency is intricately related to both performance quality and skin temperature management, making optimization for system energy efficiency a complex task for battery-powered platforms. With the prevalence of portable electronics, the research outcome has a profound impact on the advancement of the relevant research domains and on society. The research agenda is complemented by an education agenda focusing on the design of handheld platforms, such as smartphones and other high-performance wearable electronics. The educational agenda includes (1) new graduate and undergraduate curricula that incorporates processor and handheld temperature and energy management techniques, (2) enhancing computer architecture and mobile computing courses through lab activities on the proposed skin temperature management for mobile devices, (3) mentoring undergraduate and graduate students in research, and (4) attracting and retaining underrepresented groups of students in STEM fields.This research tackles the problem of performance, temperature and energy efficiency co-optimization from the vantage point of managing the hardware resources. It builds on the PI?s prior work in system and hardware architecture by proposing an optimizing user satisfaction (OPUS) framework for holistic management and coordination of performance quality, skin temperature, and energy efficiency for handhelds. Through accurate execution time models, OPUS dynamically adjusts the mobile platforms to meet the different quality of service goals. The research investigates the dynamic voltage-frequency scaling and temperature-aware computation acceleration algorithms, as well as emerging dynamic cooling mechanisms, suitable for handheld platforms. Optimizing for performance, energy efficiency, or temperature is not new, but optimizing devices in the context of smartphone user satisfaction gives rise to a set of opportunities that are non-existent in conventional computing platforms. The findings can serve as foundations for future user satisfaction optimization research for handheld platforms.
智能手机在2015年达到了近40亿的全球订阅量,并已成为我们的日常伴侣,提供高容量计算以及个性化计算。对于智能手机来说,用户满意度决定了特定平台的成功或失败。用户满意度的首要因素是性能,用户可以通过计算性能和电池性能来体验性能。因此,智能手机设计必须以协调的方式实现性能、温度和能源管理之间的平衡,以最大限度地提高用户满意度。由移动的应用程序执行时间衡量的性能长期以来一直被认为是一个确定性的量。实际上,执行时间会根据数据输入的特性和系统的不同状态而发生很大变化。此外,设备表面温度是手持设备的独特约束。它与智能手机内主要发热源的位置紧密相连。因此,智能手机的能效与性能质量和皮肤温度管理密切相关,使得系统能效优化成为电池供电平台的复杂任务。随着便携式电子产品的普及,其研究成果对相关研究领域的进步和社会产生了深远的影响。除了研究议程之外,还制定了一项教育议程,重点关注手持平台的设计,如智能手机和其他高性能可穿戴电子产品。教育议程包括(1)新的研究生和本科生课程,包括处理器和手持温度和能量管理技术,(2)通过关于移动的设备的拟议皮肤温度管理的实验室活动来增强计算机体系结构和移动的计算课程,(3)指导本科生和研究生进行研究,(4)吸引和留住STEM领域中代表性不足的学生群体。本研究从管理硬件资源的Vantage解决性能、温度和能效协同优化问题。它建立在PI的基础上?他之前在系统和硬件架构方面的工作,提出了一个优化用户满意度(OPUS)框架,用于整体管理和协调手持设备的性能质量、皮肤温度和能源效率。通过精确的执行时间模型,OPUS动态调整移动的平台,以满足不同的服务质量目标。该研究调查了动态电压频率缩放和温度感知计算加速算法,以及新兴的动态冷却机制,适用于手持平台。针对性能、能效或温度进行优化并不新鲜,但在智能手机用户满意度的背景下优化设备会带来一系列传统计算平台中不存在的机会。研究结果可作为未来手持平台用户满意度优化研究的基础。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding the Power of Evolutionary Computation for GPU Code Optimization
了解用于 GPU 代码优化的进化计算的力量
- DOI:10.1109/iiswc55918.2022.00025
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liou, Jhe-Yu;Awan, Muaaz;Hofmeyr, Steven;Forrest, Stephanie;Wu, Carole-Jean
- 通讯作者:Wu, Carole-Jean
Understanding the thermal challenges of high-performance mobile devices with a detailed platform temperature model
通过详细的平台温度模型了解高性能移动设备的热挑战
- DOI:10.1109/iiswc.2017.8167768
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Yu, Ying-Ju;Wu, Carole-Jean
- 通讯作者:Wu, Carole-Jean
EdgeWise: Energy-efficient CNN Computation on Edge Devices under Stochastic Communication Delays
- DOI:10.1145/3530908
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Mehdi Ghasemi;Daler N. Rakhmatov;Carole-Jean Wu;S. Vrudhula
- 通讯作者:Mehdi Ghasemi;Daler N. Rakhmatov;Carole-Jean Wu;S. Vrudhula
GEVO-ML: a proposal for optimizing ML code with evolutionary computation
- DOI:10.1145/3377929.3398139
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Jhe-Yu Liou;Xiaodong Wang;S. Forrest;Carole-Jean Wu
- 通讯作者:Jhe-Yu Liou;Xiaodong Wang;S. Forrest;Carole-Jean Wu
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
- DOI:10.1145/3466752.3480129
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Young Geun Kim;Carole-Jean Wu
- 通讯作者:Young Geun Kim;Carole-Jean Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Forrest其他文献
Automated segmentation of porous thermal spray material CT scans with predictive uncertainty estimation
具有预测不确定性估计的多孔热喷涂材料 CT 扫描的自动分割
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Carianne Martinez;D. Bolintineanu;A. Olson;T. Rodgers;B. Donohoe;Kevin M. Potter;Scott A. Roberts;R. Pokharel;Stephanie Forrest;Nathan Moore - 通讯作者:
Nathan Moore
Transnational Dispute Management Special Issue: Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP)
跨国争端管理特刊:全面且进步的跨太平洋伙伴关系协定(CPTPP)
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Elizabeth Whitsitt;Stephanie Forrest;Joongi Kim;Devin Bray;Tomoko Ishikawa;Frederic G. Sourgens;Julien Chaisse - 通讯作者:
Julien Chaisse
Stephanie Forrest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Forrest', 18)}}的其他基金
Conference: NSF CICI Principal Investigator Meeting
会议:NSF CICI 首席研究员会议
- 批准号:
2340468 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
- 批准号:
2211750 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CICI:UCSS:Improving the Privacy and Security of Data for Wastewater-based Epidemiology
CICI:UCSS:提高废水流行病学数据的隐私性和安全性
- 批准号:
2115075 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Spatial Modeling of Immune Response to Multifocal SARS-CoV-2 Viral Lung Infection
合作研究:RAPID:多灶性 SARS-CoV-2 病毒肺部感染免疫反应的空间建模
- 批准号:
2029696 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
- 批准号:
1908233 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Collaborative: Policies for Enhancing U.S. Leadership in Cyberspace
EAGER:协作:加强美国网络空间领导地位的政策
- 批准号:
1444871 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Fixing Real Bugs in Real Programs Using Evolutionary Algorithms
SHF:媒介:协作研究:使用进化算法修复实际程序中的实际错误
- 批准号:
0905236 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Safe Computing Workshop: Introspective Hardware Architectures for Information Assurance
安全计算研讨会:信息保障的内省硬件架构
- 批准号:
0653951 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIC: Collaborative Research: A Biologically Motivated Scaling Theory for
BIC:协作研究:生物驱动的缩放理论
- 批准号:
0621900 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: Automated and Adaptive Diversity for Improving Computer Systems Security
协作研究:提高计算机系统安全性的自动化和自适应多样性
- 批准号:
0311686 - 财政年份:2003
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似海外基金
Maximizing Output Power for Wave Energy Converter Using Model-Based Reinforcement Learning
使用基于模型的强化学习最大化波浪能转换器的输出功率
- 批准号:
20K14976 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Sustainable and Recycling-oriented Wastewater Industry by Maximizing Valuable Resources and Energy Recovery Using the Novel Algal-bacterial Aerobic Granular Sludge Technology
利用新型藻菌好氧颗粒污泥技术,最大限度地回收宝贵资源和能源,打造可持续、以循环利用为导向的污水处理行业
- 批准号:
18H03403 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doctoral Dissertation Research: Infrastructural Design Challenges in Municipal Planning Efforts Aimed at Maximizing Energy Efficiency
博士论文研究:旨在最大限度提高能源效率的市政规划工作中的基础设施设计挑战
- 批准号:
1628580 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Surrogate Models for Maximizing Net Present Value of Renewable Energy Sources
最大化可再生能源净现值的替代模型
- 批准号:
498903-2016 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Engage Plus Grants Program
Shoppapower - Maximizing local waste/water/energy generation & re-use in retail environments.
Shoppapower - 最大限度地提高当地废物/水/能源的产生
- 批准号:
102004 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
CAREER: Maximizing Renewable Energy Integration: Optimal Management of Uncertainty with Responsive Demand
职业:最大化可再生能源整合:通过响应需求优化不确定性管理
- 批准号:
1453615 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Surrogate Models for Maximizing Net Present Value of Renewable Energy Sources
最大化可再生能源净现值的替代模型
- 批准号:
485500-2015 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Engage Grants Program
EAPSI: Maximizing the Velocity of Incoming Ocean Waves with Wave-Enhancing Resonance Chambers for Increased Energy Production
EAPSI:利用波浪增强共振室最大限度地提高传入海浪的速度,以提高能源产量
- 批准号:
1515632 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Fellowship Award
CAREER: Maximizing the Science Output of Ultra High Energy Neutrino Telescopes
职业:最大化超高能中微子望远镜的科学产出
- 批准号:
1255557 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
A study on the effectiveness of utilizing mechanical energy in sport motions that aim at maximizing end-point velocity
关于在旨在最大化终点速度的运动中利用机械能的有效性的研究
- 批准号:
23500723 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)