Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization

合作研究:SHF:中:近硬件程序修复和优化

基本信息

  • 批准号:
    2211750
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The project addresses today's reality that special-purpose computing hardware and hardware accelerators have become de facto necessities for supporting the large-scale computations used for data analysis, AI and machine learning, scientific modeling, and social-media platforms. At the same time, education and existing tools still require computer programmers to have deep knowledge of both low-level hardware considerations and higher-level application logic. Higher levels of program abstraction are more tractable for humans and automated program improvement methods because they separate algorithm logic from implementation details, while lower 'near-hardware' levels of abstraction are difficult for humans to understand and optimize because of the many crucial architectural and hardware details that often interact with application-level logic in non-trivial ways. The project addresses this gap by developing automated methods for near-hardware run-time optimization of programs, bug repair, and creation of new programs. It includes an evaluation featuring interactive human evaluations, which studies human interactions with the project's automated tools along several dimensions.The project aims to improve the automation of software engineering tasks for near-hardware domains. This requires addressing fundamental questions such as: What representations span multiple levels of abstraction? How can one analyze and select optimizations respecting both hardware and software constraints for real-world applications? How can a tool communicate its results to users who may lack expertise in either domain-specific architecture or hardware-specific details? The project adapts higher-level automated program improvement methods to three specific tasks: automatically finding optimizations that reduce general-purpose GPU code runtimes; repairing defects in circuit designs; and synthesizing debuggable code for hardware accelerators. Each task requires representations and algorithms that cross abstraction levels, and each task features an evaluation plan that places explicit emphasis on the human element, measuring the semantic gap between automatically lifted optimizations and different levels of human expertise, measuring ease of use of interactive synthesis tools across human expertise levels, and using eye tracking to investigate which elements of a multi-edit patch are most difficult understand. The project will enable many of the benefits of source-level automated program improvement to be available to near-hardware domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了当今的现实,即特殊用途的计算硬件和硬件加速器已经成为支持用于数据分析、人工智能和机器学习、科学建模和社交媒体平台的大规模计算的事实上的必需品。与此同时,教育和现有的工具仍然要求计算机程序员对低级硬件考虑和高级应用逻辑都有深入的了解。较高级别的程序抽象对人类和自动化程序改进方法来说更容易处理,因为它们将算法逻辑与实现细节分开,而较低级别的“接近硬件”的抽象对人类来说很难理解和优化,因为许多关键的体系结构和硬件细节经常以非微不足道的方式与应用程序级逻辑交互。该项目通过开发用于程序的近硬件运行时优化、错误修复和创建新程序的自动化方法来解决这一差距。它包括一项以交互式人工评估为特色的评估,该评估研究了人类与项目自动化工具在多个维度上的交互。该项目旨在提高近硬件领域软件工程任务的自动化。这需要解决一些基本问题,例如:什么表示跨越多个抽象级别?如何分析和选择针对实际应用程序的硬件和软件约束的优化方案?工具如何将其结果传达给在特定于域的体系结构或特定于硬件的细节方面缺乏专业知识的用户?该项目将更高级别的自动化程序改进方法应用于三项具体任务:自动找到减少通用GPU代码运行时间的优化;修复电路设计中的缺陷;以及为硬件加速器合成可调试的代码。每个任务需要跨越抽象级别的表示和算法,每个任务都有一个评估计划,该计划明确强调人的因素,衡量自动提升的优化和不同级别的人类专业知识之间的语义差距,衡量跨人类专业知识水平的交互式合成工具的易用性,并使用眼球跟踪来调查多编辑补丁的哪些元素最难理解。该项目将使源代码级别的自动化程序改进的许多好处适用于近硬件领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving source-code representations to enhance search-based software repair
改进源代码表示以增强基于搜索的软件修复
  • DOI:
    10.1145/3512290.3528864
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reiter, Pemma;Espinoza, Antonio M.;Doupé, Adam;Wang, Ruoyu;Weimer, Westley;Forrest, Stephanie
  • 通讯作者:
    Forrest, Stephanie
Understanding the Power of Evolutionary Computation for GPU Code Optimization
了解用于 GPU 代码优化的进化计算的力量
START: A Framework for Trusted and Resilient Autonomous Vehicles (Practical Experience Report)
  • DOI:
    10.1109/issre55969.2022.00018
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Leach;C. Timperley;K. Angstadt;A. Nguyen-Tuong;Jason Hiser;Aaron M. Paulos;P. Pal;P. Hurley;Carl Thomas;J. Davidson;S. Forrest;Claire Le Goues;Westley Weimer
  • 通讯作者:
    Kevin Leach;C. Timperley;K. Angstadt;A. Nguyen-Tuong;Jason Hiser;Aaron M. Paulos;P. Pal;P. Hurley;Carl Thomas;J. Davidson;S. Forrest;Claire Le Goues;Westley Weimer
CirFix: Automated Hardware Repair and its Real-World Applications
  • DOI:
    10.1109/tse.2023.3269899
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Priscila Santiesteban;Yu Huang;Westley Weimer;Hammad Ahmad
  • 通讯作者:
    Priscila Santiesteban;Yu Huang;Westley Weimer;Hammad Ahmad
Synthesizing Legacy String Code for FPGAs Using Bounded Automata Learning
使用有界自动机学习合成 FPGA 的遗留字符串代码
  • DOI:
    10.1109/mm.2022.3178037
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Angstadt, Kevin;Tracy, Tommy;Skadron, Kevin;Jeannin, Jean-Baptiste;Weimer, Westley
  • 通讯作者:
    Weimer, Westley
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Forrest其他文献

Automated segmentation of porous thermal spray material CT scans with predictive uncertainty estimation
具有预测不确定性估计的多孔热喷涂材料 CT 扫描的自动分割
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Carianne Martinez;D. Bolintineanu;A. Olson;T. Rodgers;B. Donohoe;Kevin M. Potter;Scott A. Roberts;R. Pokharel;Stephanie Forrest;Nathan Moore
  • 通讯作者:
    Nathan Moore
Transnational Dispute Management Special Issue: Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP)
跨国争端管理特刊:全面且进步的跨太平洋伙伴关系协定(CPTPP)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Whitsitt;Stephanie Forrest;Joongi Kim;Devin Bray;Tomoko Ishikawa;Frederic G. Sourgens;Julien Chaisse
  • 通讯作者:
    Julien Chaisse

Stephanie Forrest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Forrest', 18)}}的其他基金

Conference: NSF CICI Principal Investigator Meeting
会议:NSF CICI 首席研究员会议
  • 批准号:
    2340468
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CICI:UCSS:Improving the Privacy and Security of Data for Wastewater-based Epidemiology
CICI:UCSS:提高废水流行病学数据的隐私性和安全性
  • 批准号:
    2115075
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Spatial Modeling of Immune Response to Multifocal SARS-CoV-2 Viral Lung Infection
合作研究:RAPID:多灶性 SARS-CoV-2 病毒肺部感染免疫反应的空间建模
  • 批准号:
    2029696
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
  • 批准号:
    1908233
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Maximizing Energy Efficiency with Statistical Performance and Skin Temperature Quality of Service Guarantee for Handheld Platforms
职业:通过手持平台的统计性能和表面温度服务质量保证最大限度地提高能源效率
  • 批准号:
    1652132
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative: Policies for Enhancing U.S. Leadership in Cyberspace
EAGER:协作:加强美国网络空间领导地位的政策
  • 批准号:
    1444871
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Fixing Real Bugs in Real Programs Using Evolutionary Algorithms
SHF:媒介:协作研究:使用进化算法修复实际程序中的实际错误
  • 批准号:
    0905236
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Safe Computing Workshop: Introspective Hardware Architectures for Information Assurance
安全计算研讨会:信息保障的内省硬件架构
  • 批准号:
    0653951
  • 财政年份:
    2007
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
BIC: Collaborative Research: A Biologically Motivated Scaling Theory for
BIC:协作研究:生物驱动的缩放理论
  • 批准号:
    0621900
  • 财政年份:
    2006
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Automated and Adaptive Diversity for Improving Computer Systems Security
协作研究:提高计算机系统安全性的自动化和自适应多样性
  • 批准号:
    0311686
  • 财政年份:
    2003
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了