CAREER: Fundamental Electronic Device Performance and Reliability Investigation on Chalcogenide- and Oxide-based N- and P-type Materials for Large Area/Flexible Electronics
职业:用于大面积/柔性电子产品的硫族化物和氧化物基 N 型和 P 型材料的基础电子器件性能和可靠性研究
基本信息
- 批准号:1653343
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large area/flexible electronics presents new opportunities for applications benefiting society, such as low- cost, flexible and self-powered sensors, wearable, and even biocompatible electronics. These systems may include "smart" medical bandages that monitor the healing of wounds and medical triage patches that monitor vital signs. Also, light-weight and rugged flexible decals are a potential application for inventory tracking, pollution monitoring, structural reliability of buildings/bridges in urban areas, etc. Currently, a typical fabrication approach to enable circuitry for these applications will use organic materials in a complex integration scheme with inorganic materials "hybrid approach" that will be more costly compared to the proposed work. In addition, a serious limitation of the hybrid approach is device and circuit performance limitations due to exposure of organics to the ambient. To enable high performance systems applications for large area electronics such as "smart" bio monitoring patches, flexible sensors, RFIDs, and microcontrollers, the incorporation of low cost, non-silicon thin-film transistor materials compatible with mechanically flexible properties is essential. Moreover, the flexible application requires substrates processed at relatively low temperatures ( 180°C) compared to conventional silicon-based chip manufacturing. To address this performance gap at low cost, this research proposes exploring an entirely inorganic, non-hybrid semiconductor technology using chalcogenides (sulfur- and tellurium-based materials) and oxides (zinc oxide-based, nickel oxide and tin oxide materials). Using these semiconducting materials will result in a revolution of large-area/flexible electronics by enabling straightforward integration of multiple components (i.e., energy storage/harvesting, displays, and sensors) on a single substrate. Furthermore, they will have a resounding impact on the Internet of Things, medical, defense, and sensors by enabling technologies where it may not be practical and cost effective for silicon. Finally, the education/outreach objectives include engaging with middle school STEM educators for on-campus research in the PI"s lab and incorporating the experience into innovative curriculum plans to take back to their students. In addition, there will be implementation of "units of learning" that incorporate large-area/flex technology into advanced-level courses while also providing undergraduate research opportunities.The objective of this proposal is to fundamentally explore the use of inorganic, low temperature ( 180ºC) chalcogenide- and oxide-based n-type and p-type thin-film semiconductors for low-cost, large-area/flex- compatible devices and circuits. The research plan consists of four (4) phases: (I) materials evaluation; (II) device fabrication; (III) device characterization; and (IV) device simulation/modeling. Using physical and electrical characterization along with modeling/simulation, a comprehensive investigation will provide fundamental device performance and reliability understanding. This work will provide the opportunity to have Cd- and Pb-free materials for p- and n-type semiconductors with high carrier mobility and electrical stability for implantable or wearable electronics. Furthermore, the demonstration of large-area/flex- compatible p/n junctions, junction field effect transistors, and thin-film transistors will truly take large- area/flex processing to new heights and permit complementary circuit capabilities, such as thin film amplifiers and logic circuitry, that have not been demonstrated using appropriate processing conditions (i.e., low temp) for integration into sensors, smart bandages, detectors, RFIDs, etc. This work addresses current challenges in large-area/flex-compatible circuitry where all-inorganic, n- and p-type semiconductor devices, and circuits are vital because an organic-only or a partially organic hybrid approach has more pronounced long-term degradation of organic-based devices. Therefore, inorganic materials and devices are preferred in order to create the needed circuitry. Using these semiconducting materials will result in a revolution of large-area and flexible electronics by enabling straightforward integration of multiple components such as energy storage/harvesting, displays, and sensors on a single substrate. Furthermore, they will have a resounding impact on the Internet of Things, medical, defense, and sensors by enabling technologies where it may not be practical and cost effective for silicon.
大面积/柔性电子产品为造福社会的应用提供了新的机遇,例如低成本、灵活和自供电的传感器、可穿戴设备,甚至是生物兼容电子产品。这些系统可能包括监测伤口愈合的“智能”医用绷带和监测生命体征的医疗分类贴片。此外,轻质和坚固的柔性贴花在库存跟踪、污染监测、城市地区建筑物/桥梁的结构可靠性等方面也有潜在的应用。目前,实现这些应用的电路的典型制造方法将在复杂的集成方案中使用有机材料和无机材料“混合方法”,与拟议的工作相比,这种方法的成本将更高。此外,混合方法的一个严重限制是由于有机物暴露在环境中而导致的器件和电路性能限制。要使高性能系统应用于大面积电子产品,如“智能”生物监测贴片、柔性传感器、射频识别器和微控制器,采用与机械柔性特性兼容的低成本非硅薄膜晶体管材料是必不可少的。此外,与传统的硅基芯片制造相比,灵活的应用需要在相对较低的温度(180°C)下处理基板。为了以低成本解决这一性能差距,这项研究建议探索一种全无机、非混合半导体技术,使用硫化物(硫基和碲基材料)和氧化物(氧化锌、氧化镍和氧化锡材料)。使用这些半导体材料将通过在单个基板上直接集成多个组件(即能量存储/收集、显示器和传感器),从而导致大面积/柔性电子产品的革命。此外,它们将对物联网、医疗、国防和传感器产生深远影响,使那些对硅片来说可能不实用和不具成本效益的技术成为可能。最后,教育/外展目标包括与中学STEM教育工作者接触,在Pi“S实验室进行校园研究,并将经验融入创新的课程计划,带给他们的学生。此外,还将实施“学习单元”,将大面积/柔性技术纳入高级课程,同时提供本科生研究机会。这项提议的目标是从根本上探索无机、低温(180℃)硫化物和氧化物基n型和p型薄膜半导体在低成本、大面积/柔性兼容器件和电路中的使用。研究计划包括四(4)个阶段:(I)材料评估;(Ii)器件制造;(Iii)器件特性;(Iv)器件模拟/建模。利用物理和电气特性以及建模/仿真,全面的调查将提供基本的器件性能和可靠性了解。这项工作将为获得用于p型和n型半导体的无Cd和Pb型材料提供机会,这些材料具有高载流子迁移率和用于植入型或可穿戴电子产品的电稳定性。此外,大面积/柔性兼容p/n结、结场效应晶体管和薄膜晶体管的展示将真正将大面积/柔性处理提高到新的高度,并允许补充电路能力,例如薄膜放大器和逻辑电路,这些能力尚未使用适当的工艺条件(即,低温)来集成到传感器、智能绷带、探测器、RFID等中。这项工作解决了大面积/柔性兼容电路中的当前挑战,在该电路中,所有无机、n和p型半导体器件,电路是至关重要的,因为纯有机或部分有机混合方法对基于有机的设备有更明显的长期退化。因此,为了制造所需的电路,最好使用无机材料和器件。使用这些半导体材料将在单一基板上直接集成能量存储/采集、显示器和传感器等多个组件,从而导致大面积灵活电子产品的革命。此外,它们将对物联网、医疗、国防和传感器产生深远影响,使那些对硅片来说可能不实用和不具成本效益的技术成为可能。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positive Bias Instability in ZnO TFTs with Al 2 O 3 Gate Dielectric
具有 Al 2 O 3 栅极电介质的 ZnO TFT 的正偏压不稳定性
- DOI:10.1109/irps.2019.8720547
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bolshakov, Pavel;Rodriguez-Davila, Rodolfo A.;Quevedo-Lopez, Manuel;Young, Chadwin D.
- 通讯作者:Young, Chadwin D.
Introduction of a Reset MOSFET to Mitigate the Influence of Ionic Movement in Perovskite MOSFET Photodetector Measurements
- DOI:10.1109/icmts50340.2022.9898238
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Jinbo Liu;R. Haroldson;Grigorii Verkhogliadov;Dayang Lin;Q. Gu;A. Zakhidov;W. Hu;C. D. Young
- 通讯作者:Jinbo Liu;R. Haroldson;Grigorii Verkhogliadov;Dayang Lin;Q. Gu;A. Zakhidov;W. Hu;C. D. Young
Schottky Barrier Height Tuning on Platinum-gated ZnO Metal-Semiconductor Field Effect Transistors by In-Situ Surface Modification
通过原位表面改性对铂栅 ZnO 金属半导体场效应晶体管进行肖特基势垒高度调节
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Rodriguez-Davila, R. A.;Chapman, R. A.;Mejia, I.;Quevedo-Lopez, M. A.;Young, C. D.
- 通讯作者:Young, C. D.
Electrical characterization of process induced effects on non-silicon devices
非硅器件工艺诱发效应的电气特性
- DOI:10.1109/icicdt.2018.8399784
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Young, Chadwin D.;Bolshakov, Pavel;Rodriguez-Davila, Rodolfo A.;Zhao, Peng;Khosravi, Ava;Mejia, Israel;Quevedo-Lopez, Manuel;Hinkle, Christopher L.;Wallace, Robert M.
- 通讯作者:Wallace, Robert M.
Deconvolution of Hot Carrier and Cold Carrier Injection in ZnO TFTs
ZnO TFT 中热载流子和冷载流子注入的解卷积
- DOI:10.1109/snw50361.2020.9131625
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bolshakov, P.;Rodriguez-Davila, R.A.;Quevedo-Lopez, M.;Young, C.D.
- 通讯作者:Young, C.D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chadwin Young其他文献
Chadwin Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chadwin Young', 18)}}的其他基金
REU Site: Electronic Materials Evaluation Research for Greater Exposure to Future Technology Careers (EMERGE)
REU 网站:电子材料评估研究,以更好地接触未来技术职业 (EMERGE)
- 批准号:
2150281 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
US-Ireland R&D Partnership: Ga2O3: Understanding Growth, Interfaces and Defects to enable next generation Electronics (GUIDE)
美国-爱尔兰 R
- 批准号:
2154535 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
New quantum chemistry tools from a fundamental understanding of electronic structure
来自对电子结构的基本理解的新量子化学工具
- 批准号:
DDG-2020-00025 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Development Grant
CAREER: Revealing the Fundamental Mechanisms Behind the Dislocation-Induced Electronic States in III-V Semiconductors
职业:揭示 III-V 族半导体中位错诱发电子态背后的基本机制
- 批准号:
2047308 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
New quantum chemistry tools from a fundamental understanding of electronic structure
来自对电子结构的基本理解的新量子化学工具
- 批准号:
DDG-2020-00025 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Development Grant
Heterojunctions as the Weakest Link: A Fundamental Investigation of Damage Evolution in Electronic Devices
异质结作为最薄弱的环节:电子设备损伤演化的基础研究
- 批准号:
2015795 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New quantum chemistry tools from a fundamental understanding of electronic structure
来自对电子结构的基本理解的新量子化学工具
- 批准号:
DDG-2020-00025 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Development Grant
Probing Fundamental Magneto-Electronic Properties of Two-Dimensional Metal Halides
探测二维金属卤化物的基本磁电性质
- 批准号:
2004420 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Fundamental understanding of electronic transitions in platinum group metals and alloys from high-pressure experiment and ab initio theory
从高压实验和从头算理论对铂族金属和合金中电子跃迁的基本理解
- 批准号:
338621729 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Grants
Fundamental electronic transport in emerging one-dimensional nanoelectronic devices
新兴一维纳米电子器件中的基本电子传输
- 批准号:
DP170104555 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Carrier Mobility Distributions: New Insights into Fundamental Electronic Transport in Advanced Semiconductor Structures
载流子迁移率分布:对先进半导体结构中基本电子传输的新见解
- 批准号:
DP140103667 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Fundamental study of phase change superlattice films and its application to electronic devices
相变超晶格薄膜的基础研究及其在电子器件中的应用
- 批准号:
26886015 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Research Activity Start-up