CAREER: Stochastic Nested Composition Optimization: Theory and Algorithms
职业:随机嵌套组合优化:理论和算法
基本信息
- 批准号:1653435
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this Faculty Early Career Development (CAREER) award is to develop foundational theory and efficient computational tools for an important class of data-driven stochastic optimization problems, stochastic nested composition optimization. These nested composition problems arise in many areas such as risk management, machine learning, and online decision making, and are not amenable to classical methods of stochastic optimization. On the theory and methodology side, the project will advance both optimization and data analytics. On the education side, the project will result in curricular innovation that integrates optimization and data analytics in a unified way and offers new case studies on practical applications. The project will promote underrepresented minority students by involving them in frontier research. The research will produce new algorithms and analysis tools that will be useful for many data-intensive applications. These methods will be empirically tested in a collaborative project with a local healthcare system, with the goal of improving healthcare delivery by reducing cost and improving quality of service. Stochastic nested composition optimization constitutes a new class of stochastic optimization problems that involve nested nonlinear composition of multiple expectations and multi-level random variables. This project will (a) establish the basic complexity theory for two-level and multi-level stochastic nested composition optimization and their generalizations; (b) develop efficient algorithms that process streaming data with theoretical guarantees; (c) investigate several special cases of the problem and apply the results to modeling and optimizing healthcare decisions based on real clinical data (obtained through the collaboration with a NJ-based hospital chain); and (d) develop innovative curricula and research projects that can bring students at various levels to frontier technology. The nested composition provides a rich modeling tool for applications that require data-driven decision-making and optimization under uncertainty. A critical challenge is that the objective is no longer a linear functional of the data distribution, and thus existing theory and methods are inappropriate. The nonlinearity with respect to the distribution of data makes the problem fundamentally more difficult than most of the classical problems. Overcoming the analytical challenge calls for an integration of mathematical programming and stochastic analysis. If successful, the research will make a substantial contribution by expanding the scope of stochastic optimization. Theoretically, it will strengthen our mathematical understanding of stochastic optimization and establish foundational sample complexity bounds. Methodologically, it will provide new algorithms and analysis tools for several important problems in data-driven optimization and online learning. The results will establish important connections among several areas in mathematical programming, statistics, and machine learning.
这个教师早期职业发展(CAREER)奖的目标是为一类重要的数据驱动随机优化问题,随机嵌套组合优化开发基础理论和有效的计算工具。这些嵌套组合问题出现在许多领域,如风险管理,机器学习和在线决策,并不适合随机优化的经典方法。在理论和方法方面,该项目将推进优化和数据分析。在教育方面,该项目将导致课程创新,以统一的方式整合优化和数据分析,并提供有关实际应用的新案例研究。该项目将促进代表性不足的少数民族学生参与前沿研究。这项研究将产生新的算法和分析工具,对许多数据密集型应用程序有用。 这些方法将在与当地医疗保健系统的合作项目中进行经验测试,目标是通过降低成本和提高服务质量来改善医疗保健服务。随机嵌套复合优化是一类新的随机优化问题,涉及多个期望和多水平随机变量的嵌套非线性复合。本计画将(a)建立二层与多层随机巢式组合最佳化的基本复杂性理论及其推广:(B)发展有理论保证的处理串流资料的有效演算法;(c)研究该问题的几种特殊情况,并将结果应用于基于真实的临床数据的建模和优化保健决策(d)开发创新课程和研究项目,使不同层次的学生接触前沿技术。嵌套组合为需要在不确定性下进行数据驱动决策和优化的应用程序提供了丰富的建模工具。一个关键的挑战是,目标不再是数据分布的线性函数,因此现有的理论和方法是不合适的。相对于数据分布的非线性使得问题从根本上比大多数经典问题更困难。克服分析的挑战,要求数学规划和随机分析的整合。如果成功,该研究将通过扩大随机优化的范围做出实质性贡献。从理论上讲,它将加强我们对随机优化的数学理解,并建立基本的样本复杂性界限。在方法上,它将为数据驱动优化和在线学习中的几个重要问题提供新的算法和分析工具。研究结果将在数学规划、统计学和机器学习的几个领域之间建立重要的联系。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Single Timescale Stochastic Approximation Method for Nested Stochastic Optimization
- DOI:10.1137/18m1230542
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Saeed Ghadimi;A. Ruszczynski;Mengdi Wang
- 通讯作者:Saeed Ghadimi;A. Ruszczynski;Mengdi Wang
Improved Sample Complexity for Stochastic Compositional Variance Reduced Gradient
提高随机成分方差的样本复杂性并减少梯度
- DOI:10.23919/acc45564.2020.9147515
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lin, Tianyi;Fan, Chengyou;Wang, Mengdi;Jordan, Michael I.
- 通讯作者:Jordan, Michael I.
Decentralized Gossip Stochastic Bilevel Optimization over Communication Networks
通信网络上的去中心化八卦随机双层优化
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shuoguang Yang;Xuezhou Zhang;Mengdi Wang
- 通讯作者:Mengdi Wang
Multilevel Stochastic Gradient Methods for Nested Composition Optimization
- DOI:10.1137/18m1164846
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Shuoguang Yang;Mengdi Wang;Ethan X. Fang
- 通讯作者:Shuoguang Yang;Mengdi Wang;Ethan X. Fang
Accelerating Stochastic Composition Optimization
- DOI:
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:Mengdi Wang;Ji Liu;Ethan X. Fang
- 通讯作者:Mengdi Wang;Ji Liu;Ethan X. Fang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengdi Wang其他文献
Risk factors for ellipsoid zone integrity after macula-off rhegmatogenous retinal detachment repair
黄斑脱落孔源性视网膜脱离修复术后椭球区完整性的危险因素
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Fang;Miao Chen;Jing Zhai;Jiu;Yiqi Chen;Hai;Z. Qian;Mengdi Wang;Xiao;Yu - 通讯作者:
Yu
Parameter-Efficient Sparsity for Large Language Models Fine-Tuning
用于大型语言模型微调的参数高效稀疏性
- DOI:
10.48550/arxiv.2205.11005 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuchao Li;Fuli Luo;Chuanqi Tan;Mengdi Wang;Songfang Huang;Shen Li;Junjie Bai - 通讯作者:
Junjie Bai
Neural Bandits for Protein Sequence Optimization
用于蛋白质序列优化的神经老虎机
- DOI:
10.1109/ciss53076.2022.9751154 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chenyu Wang;Joseph Kim;Le Cong;Mengdi Wang - 通讯作者:
Mengdi Wang
Learning to Control in Metric Space with Optimal Regret
学习在度量空间中以最优遗憾进行控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lin F. Yang;Chengzhuo Ni;Mengdi Wang - 通讯作者:
Mengdi Wang
Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films
单分散半导体单壁碳纳米管显着增强了立体规则聚(3-十二烷基噻吩)薄膜的热电性能
- DOI:
10.1016/j.carbon.2023.118654 - 发表时间:
2023 - 期刊:
- 影响因子:10.9
- 作者:
Mengdi Wang;S. Qu;Yanling Chen;Qin Yao;Lidong Chen - 通讯作者:
Lidong Chen
Mengdi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mengdi Wang', 18)}}的其他基金
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Optimization for Barcoding and Decoding Single-Cell Dynamics via CRISPR Gene Editing
合作研究:通过 CRISPR 基因编辑对单细胞动力学进行条形码和解码的统计优化
- 批准号:
1953686 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Closing the Duality Gap: Decomposition of High-Dimensional Nonconvex Optimization
缩小对偶差距:高维非凸优化的分解
- 批准号:
1619818 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant