Collaborative Research: Statistical Optimization for Barcoding and Decoding Single-Cell Dynamics via CRISPR Gene Editing

合作研究:通过 CRISPR 基因编辑对单细胞动力学进行条形码和解码的统计优化

基本信息

  • 批准号:
    1953686
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Novel genomics technologies, such as gene editing and single-cell sequencing, have brought great progress on defining the structure and function of human cells at unprecedented resolution and scale. Traditional “bulk” genomic measurements are often insufficient as sample heterogeneity and differential cell state dynamics could be masked. CRISPR-based gene-editing technology enables single-cell lineage tracking using evolvable barcodes. Building on this technology, we will address mathematical challenges arising from single-cell barcoding and decoding, by developing online optimization and single-cell time series analysis methods. This line of research would generate analytical tools for barcoded singlecell data, with provable theoretical guarantees, that are both sharable and deployable for defining the genetic basis of cellular lineage and gene expression states. Application of these tools will help uncover the complex biology behind cell evolution and interaction in health and diseases. The research includes projects suitable for student participation and training at various levels, and open-source software development. Current cellular barcoding tool is limited by its scalability, and the single-cell transition data made possible by the barcoding technology presents new analytical challenges. To significantly improve the capacity of cell barcoding, we will develop learning-theoretic optimization methods for efficiently finding the best barcoding design over a large combinatorial design space. Further, we will develop state embedding methods to identify mathematical abstractions of cell states from gene-expression paths, as supported by the barcoded trajectories, that imply critical cell dynamics and genetic regulation. In particular, we will use kernelized low-rank approximation and convex polytope approximation schemes to estimate metastable cell clusters and gene-expression landmarks. Finally, we will validate the dynamics decoding tools using data from real cancer model experiments. The research findings will open up new potential in biological-driven mathematical methods. They will have implications for stem-cell and developmental biology, neuroscience, immunology, and other areas of biological investigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新的基因组学技术,如基因编辑和单细胞测序,在以前所未有的分辨率和规模定义人类细胞的结构和功能方面取得了巨大进展。传统的“批量”基因组测量通常是不够的,因为样本异质性和差异细胞状态动态可能会被掩盖。基于CRISPR的基因编辑技术可以使用可进化的条形码进行单细胞谱系跟踪。在这项技术的基础上,我们将通过开发在线优化和单细胞时间序列分析方法来解决单细胞条形码和解码带来的数学挑战。这一系列的研究将为条形码化的erce细胞数据产生分析工具,具有可证明的理论保证,可共享和部署,用于定义细胞谱系和基因表达状态的遗传基础。这些工具的应用将有助于揭示健康和疾病中细胞进化和相互作用背后的复杂生物学。该研究包括适合学生参与的项目和各级培训,以及开源软件开发。当前的细胞条形码工具受到其可扩展性的限制,并且通过条形码技术实现的单细胞转变数据提出了新的分析挑战。为了显着提高细胞条形码的能力,我们将开发学习理论优化方法,以便在大型组合设计空间中有效地找到最佳条形码设计。此外,我们将开发状态嵌入方法,以确定从基因表达路径的细胞状态的数学抽象,由条形码轨迹支持,这意味着关键的细胞动力学和遗传调控。特别是,我们将使用核化的低秩近似和凸多面体近似方案来估计亚稳态细胞簇和基因表达地标。最后,我们将使用来自真实的癌症模型实验的数据来验证动态解码工具。研究结果将为生物驱动的数学方法开辟新的潜力。他们将对干细胞和发育生物学、神经科学、免疫学和其他生物学研究领域产生影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bandit Theory and Thompson Sampling-Guided Directed Evolution for Sequence Optimization
  • DOI:
    10.48550/arxiv.2206.02092
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Yuan;Chengzhuo Ni;Huazheng Wang-;Xuezhou Zhang;Le Cong;Csaba Szepesvari;Mengdi Wang
  • 通讯作者:
    Hui Yuan;Chengzhuo Ni;Huazheng Wang-;Xuezhou Zhang;Le Cong;Csaba Szepesvari;Mengdi Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mengdi Wang其他文献

Risk factors for ellipsoid zone integrity after macula-off rhegmatogenous retinal detachment repair
黄斑脱落孔源性视网膜脱离修复术后椭球区完整性的危险因素
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Fang;Miao Chen;Jing Zhai;Jiu;Yiqi Chen;Hai;Z. Qian;Mengdi Wang;Xiao;Yu
  • 通讯作者:
    Yu
Parameter-Efficient Sparsity for Large Language Models Fine-Tuning
用于大型语言模型微调的参数高效稀疏性
  • DOI:
    10.48550/arxiv.2205.11005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuchao Li;Fuli Luo;Chuanqi Tan;Mengdi Wang;Songfang Huang;Shen Li;Junjie Bai
  • 通讯作者:
    Junjie Bai
Neural Bandits for Protein Sequence Optimization
用于蛋白质序列优化的神经老虎机
Learning to Control in Metric Space with Optimal Regret
学习在度量空间中以最优遗憾进行控制
Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films
单分散半导体单壁碳纳米管显着增强了立体规则聚(3-十二烷基噻吩)薄膜的热电性能
  • DOI:
    10.1016/j.carbon.2023.118654
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Mengdi Wang;S. Qu;Yanling Chen;Qin Yao;Lidong Chen
  • 通讯作者:
    Lidong Chen

Mengdi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mengdi Wang', 18)}}的其他基金

CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312093
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Nested Composition Optimization: Theory and Algorithms
职业:随机嵌套组合优化:理论和算法
  • 批准号:
    1653435
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Closing the Duality Gap: Decomposition of High-Dimensional Nonconvex Optimization
缩小对偶差距:高维非凸优化的分解
  • 批准号:
    1619818
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了