Closing the Duality Gap: Decomposition of High-Dimensional Nonconvex Optimization
缩小对偶差距:高维非凸优化的分解
基本信息
- 批准号:1619818
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the modern computerized age, nonconvex optimization remains a critical computational challenge. Nonconvexity of an optimization problem implies a combinatorial structure, which often makes the computation problem fundamentally hard. Efficient computation tools with global approximation guarantees are in high demand. The principal investigator will study a class of nonconvex optimization problems that naturally arise from distributed intelligence systems, sparse estimation and data analysis. The proposed research will contribute new computation tools for data analytics, statistic and machine learning, distributed and parallel computing, and multi-agent intelligence systems. The project will also develop two new courses for both undergraduate and graduate students at Princeton and also will involve undergraduate students in the research project via the Princeton undergraduate summer research program.This research project aims to tackle an important class of nonconvex problems utilizing their geometric structure via a systematic dualization approach. The result is expected to advance the non-convex optimization theory as well as to provide algorithmic solutions to a large variety of distributed systems. Specifically, the principal investigator plans to study the non-convex duality for a class of non-convex optimization problems that admit a near-separable structure, with extensions to minimax problems and variational inequalities, and to develop computation tools that produce approximate global optimal solutions with complexity guarantees. In addition to the fundamental aspects, the principal investigator aims to investigate practical algorithms tailored to specific problems in high-dimensional structural estimation, sparse learning, and distributed optimization. The theoretical results and new methodology are expected to advance the theory of non-convex optimization as well as to provide algorithmic solutions to a variety of computational challenges.
在现代计算机时代,非凸优化仍然是一个关键的计算挑战。优化问题的非凸性意味着一个组合结构,这通常会使计算问题从根本上变得困难。具有全局逼近保证的高效计算工具的需求量很大。首席研究员将研究一类自然产生于分布式智能系统,稀疏估计和数据分析的非凸优化问题。 拟议的研究将为数据分析,统计和机器学习,分布式和并行计算以及多智能体智能系统提供新的计算工具。该项目还将为普林斯顿大学的本科生和研究生开发两门新课程,并将通过普林斯顿大学本科生暑期研究计划让本科生参与研究项目。该研究项目旨在通过系统的对偶方法利用几何结构解决一类重要的非凸问题。该结果有望推进非凸优化理论的发展,并为各种分布式系统提供算法解决方案。具体而言,首席研究员计划研究一类非凸优化问题的非凸对偶,这些问题具有近可分离的结构,扩展到极大极小问题和变分不等式,并开发计算工具,以产生具有复杂性保证的近似全局最优解。除了基本方面,主要研究者的目的是研究针对高维结构估计,稀疏学习和分布式优化中的特定问题的实用算法。理论结果和新的方法,预计将推进非凸优化理论,以及提供各种计算挑战的算法解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengdi Wang其他文献
Risk factors for ellipsoid zone integrity after macula-off rhegmatogenous retinal detachment repair
黄斑脱落孔源性视网膜脱离修复术后椭球区完整性的危险因素
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Fang;Miao Chen;Jing Zhai;Jiu;Yiqi Chen;Hai;Z. Qian;Mengdi Wang;Xiao;Yu - 通讯作者:
Yu
Parameter-Efficient Sparsity for Large Language Models Fine-Tuning
用于大型语言模型微调的参数高效稀疏性
- DOI:
10.48550/arxiv.2205.11005 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuchao Li;Fuli Luo;Chuanqi Tan;Mengdi Wang;Songfang Huang;Shen Li;Junjie Bai - 通讯作者:
Junjie Bai
Neural Bandits for Protein Sequence Optimization
用于蛋白质序列优化的神经老虎机
- DOI:
10.1109/ciss53076.2022.9751154 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chenyu Wang;Joseph Kim;Le Cong;Mengdi Wang - 通讯作者:
Mengdi Wang
Learning to Control in Metric Space with Optimal Regret
学习在度量空间中以最优遗憾进行控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lin F. Yang;Chengzhuo Ni;Mengdi Wang - 通讯作者:
Mengdi Wang
Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films
单分散半导体单壁碳纳米管显着增强了立体规则聚(3-十二烷基噻吩)薄膜的热电性能
- DOI:
10.1016/j.carbon.2023.118654 - 发表时间:
2023 - 期刊:
- 影响因子:10.9
- 作者:
Mengdi Wang;S. Qu;Yanling Chen;Qin Yao;Lidong Chen - 通讯作者:
Lidong Chen
Mengdi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mengdi Wang', 18)}}的其他基金
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Optimization for Barcoding and Decoding Single-Cell Dynamics via CRISPR Gene Editing
合作研究:通过 CRISPR 基因编辑对单细胞动力学进行条形码和解码的统计优化
- 批准号:
1953686 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Stochastic Nested Composition Optimization: Theory and Algorithms
职业:随机嵌套组合优化:理论和算法
- 批准号:
1653435 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
- 批准号:
23K03267 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
- 批准号:
23K12962 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
- 批准号:
23K03076 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Fellowship
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
- 批准号:
10593761 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: