SCH: INT: Collaborative Research: Diagnostic Driving: Real Time Driver Condition Detection Through Analysis of Driving Behavior

SCH:INT:协作研究:诊断驾驶:通过驾驶行为分析实时检测驾驶员状况

基本信息

  • 批准号:
    1653624
  • 负责人:
  • 金额:
    $ 89.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The automobile presents a great opportunity for healthcare monitoring. For one, most Americans engage in daily driving, and patient's time spent in vehicles is a missed opportunity to monitor their condition and general wellbeing. The goal of this project is to develop and evaluate technology for automatic in-vehicle monitoring of early symptoms of medical conditions and disrupted medications of patients, and to provide preventive care. Specifically, in this project we will focus on Attention-Deficit/Hyperactivity disorder (ADHD) in teenagers and young adults, a prevalent chronic medical condition which when uncontrolled has the potential for known negative health and quality of life consequences. The approach of using driving behavior to monitor ADHD symptoms could be applied to many other medical conditions (such as diabetes, failing eyesight, intoxication, fatigue or heart attacks) thereby transforming medical management into real-time sensing and management. Identification of all these conditions from driving behavior and alerting the proper agent could transform how we think about health monitoring and result in saved lives and reduced injuries.The main goal of this project is to leverage the large amounts of health data that can be collected while driving via machine learning, in order to detect subtle changes in behavior due to out-of-control ADHD symptoms that can, for example, indicate the onset of episodes of inattention before they happen. Via lab-based driving simulator as well as on-road studies, the research team will investigate the individualized behaviors and patterns in vehicle control behaviors that are characteristic of ADHD patients under various states of medication usage. The team will develop a machine learning framework based on case-based and context-based reasoning to match the current driving behavior of the patient with previously recorded driving behavior corresponding to different ADHD symptoms. The key machine learning challenge is to define appropriate similarity measures to compare driving behavior that take into account the key distinctive features of ADHD driving behavior identified during our study. The team will evaluate the accuracy with which the proposed approach can identify and distinguish between different out-of-control ADHD symptoms, which are the implications for long-term handling of ADHD patients, via driving simulator experiments as well as using instrumented cars with real patients.
汽车为医疗监控提供了巨大的机会。首先,大多数美国人每天都在开车,病人在车里的时间错过了监测他们的状况和总体健康状况的机会。该项目的目标是开发和评估车载自动监测技术,以监测疾病的早期症状和患者中断的药物治疗,并提供预防性护理。具体来说,在这个项目中,我们将重点关注青少年和年轻人的注意力缺陷/多动障碍(ADHD),这是一种流行的慢性疾病,如果不加以控制,可能会对健康和生活质量产生负面影响。使用驾驶行为来监测ADHD症状的方法可以应用于许多其他医疗条件(如糖尿病,视力下降,中毒,疲劳或心脏病发作),从而将医疗管理转变为实时感知和管理。从驾驶行为中识别所有这些情况并提醒适当的代理可以改变我们对健康监测的看法,从而挽救生命并减少伤害。该项目的主要目标是利用通过机器学习可以在驾驶时收集的大量健康数据,以检测由于失控的ADHD症状而导致的行为细微变化,例如,在注意力不集中发作之前就显示出来。通过基于实验室的驾驶模拟器以及道路研究,研究小组将调查ADHD患者在各种药物使用状态下的车辆控制行为的个性化行为和模式。该团队将开发一个基于案例和上下文推理的机器学习框架,将患者当前的驾驶行为与之前记录的对应于不同ADHD症状的驾驶行为进行匹配。机器学习的关键挑战是定义适当的相似性度量来比较驾驶行为,这些驾驶行为考虑到了我们研究中确定的ADHD驾驶行为的关键显著特征。该团队将通过驾驶模拟器实验以及使用装有真实的患者的仪表化汽车来评估所提出的方法可以识别和区分不同失控ADHD症状的准确性,这些症状是ADHD患者长期处理的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi-Ching Lee其他文献

Effectiveness of Interventions to Reduce Opioid Use After Orthopaedic Surgery: A Systematic Review of Randomised Controlled Trials
  • DOI:
    10.1007/s40265-024-02116-2
  • 发表时间:
    2024-12-20
  • 期刊:
  • 影响因子:
    14.400
  • 作者:
    Melanie Hamilton;Stephanie Mathieson;Masoud Jamshidi;Andy Wang;Yi-Ching Lee;Danijela Gnjidic;Chung-Wei Christine Lin
  • 通讯作者:
    Chung-Wei Christine Lin
The use of interventional procedures for cancer pain. A brief review
  • DOI:
    10.1007/s00520-024-08467-6
  • 发表时间:
    2024-04-12
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Yi-Ching Lee;Timothy Brake;Emma Zhao;Alix Dumitrescu;Wei Lee;Benjamin Tassie;Kok-Eng Khor;Andy Yi-Yang Wang
  • 通讯作者:
    Andy Yi-Yang Wang
Commuter types identified using clustering and their associations with source-specific PM<sub>2.5</sub>
  • DOI:
    10.1016/j.envres.2021.111419
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jenna R. Krall;Karlin D. Moore;Charlotte Joannidis;Yi-Ching Lee;Anna Z. Pollack;Michelle McCombs;Jonathan Thornburg;Sivaraman Balachandran
  • 通讯作者:
    Sivaraman Balachandran
Parenting in the Digital Contexts: Are Parents Ready to Use Automated Vehicles to Transport Children?
Orbital sarcoidosis
  • DOI:
    10.1016/j.tcmj.2014.05.005
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yi-Ching Lee;Tzu-Lun Huang;Rong-Kung Tsai
  • 通讯作者:
    Rong-Kung Tsai

Yi-Ching Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi-Ching Lee', 18)}}的其他基金

SCH: INT: Collaborative Research: Diagnostic Driving: Real Time Driver Condition Detection Through Analysis of Driving Behavior
SCH:INT:协作研究:诊断驾驶:通过驾驶行为分析实时检测驾驶员状况
  • 批准号:
    1521959
  • 财政年份:
    2015
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 89.11万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 89.11万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 89.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了