CAREER: Equilibrium and Dynamics of Strongly Interacting Many-body Systems
职业:强相互作用多体系统的平衡和动力学
基本信息
- 批准号:1654340
- 负责人:
- 金额:$ 50.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Physics contribute funds to this CAREER award, which supports an integrated research and educational effort on theoretical quantum many-body physics. Quantum many-body physics studies the behavior of quantum mechanical systems that contain a large number of constituents. Due to both the quantum mechanical nature of the systems and the large number of constituents, exotic physical properties can emerge that usually do not have a direct analog in classical systems. Of particular interest, and the focus of this project, are strongly correlated systems where the components of the system interact strongly with each other, taking the system into a completely different regime than those encountered in non-interacting or weakly interacting systems. This project aims to study the theoretical foundations of new features in these systems that are made possible due to the strong interactions, both at equilibrium and in dynamical processes. By constructing new theoretical models and by designing experimentally feasible ways to probe the predicted properties, the project aims to not only deepen our understanding of strongly correlated phenomena in condensed matter physics, but to also contribute to their study and application in quantum information theory, quantum field theory, and cold-atom experiments.Moreover, as part of the educational component of the project, the PI aims to integrate novel concepts of quantum mechanics and quantum many-body physics into outreach and educational activities by developing a new course on "Many-body Entanglement and Topological Phases" for senior undergraduate and graduate students, and by organizing a "quantum chess" tournament for local high-school students, a large proportion of which are from underrepresented groups. The goal of the tournament is to introduce the basic concepts of quantum mechanics to high-school students through engaging games.TECHNICAL SUMMARYThe Division of Materials Research and the Division of Physics contribute funds to this CAREER award, which supports an integrated research and educational effort on theoretical quantum many-body physics. The goal of the project is to advance the fundamental understanding of quantum many-body systems, both at equilibrium and in dynamical processes. The research focuses on systems with strong interactions, and explores novel topological phenomena and many-body dynamics, which cannot exist in non-interacting systems. The PI will rely on her previous research on exactly solvable lattice models, and on field-theory analysis and tensor-network numerical approaches to tackle these problems. In particular, this project will focus on the following topics:i) Constructing and analyzing new discrete gauge theories in 3D,ii) Interpreting and generalizing the topological order in 3D fractal quantum codes using a coupled-layer construction, with concomitant potential quantum-information applications,iii) Mapping the Lieb-Robinson light cone in diffusive and many-body localized systems with experimentally feasible measurement schemes.The PI will explore the non-perturbative regime of strongly interacting quantum many-body systems, and will look for fundamentally new universal behavior. Potential achievements include: i) discovering new twisted-gauge theories in 3D and understanding of their properties both in the bulk and on the surface; ii) finding a generalized topological phase diagram which connects the fractal quantum code to more conventional topological orders, and constructing more physical models that can serve as quantum memories; (3) understanding the ability of various correlator measures in detecting information propagation in diffusive or many-body localized systems, and finding experimentally feasible setups for realizing such measurements.Moreover, as part of the educational component of the project, the PI aims to integrate novel concepts of quantum mechanics and quantum many-body physics into outreach and educational activities by developing a new course on "Many-body Entanglement and Topological Phases" for senior undergraduate and graduate students, and by organizing a "quantum chess" tournament for local high-school students, a large proportion of which are from underrepresented groups. The goal of the tournament is to introduce the basic concepts of quantum mechanics to high-school students through engaging games.
材料研究部和物理部为该职业奖提供资金,该奖项支持理论量子多体物理学的综合研究和教育工作。量子多体物理学研究包含大量组分的量子力学系统的行为。由于系统的量子力学性质和大量的成分,奇异的物理性质可以出现,通常在经典系统中没有直接的模拟。特别感兴趣的是,这个项目的重点是强相关系统,其中系统的组件相互作用强烈,使系统进入一个完全不同的制度,而不是在非相互作用或弱相互作用系统中遇到的。该项目旨在研究这些系统中由于平衡和动态过程中的强相互作用而可能产生的新特征的理论基础。通过构建新的理论模型和设计实验可行的方法来探测预测的性质,该项目的目的不仅是加深我们对凝聚态物理中强关联现象的理解,而且还有助于它们在量子信息理论、量子场论和冷原子实验中的研究和应用。此外,作为该项目教育部分的一部分,该计划旨在将量子力学和量子多体物理学的新概念融入外展和教育活动中,为高年级本科生和研究生开设了一门新的“多体纠缠和拓扑相位”课程,并为本地高中生组织了一场“量子国际象棋”比赛,其中大部分学生来自代表性不足的群体。比赛的目的是通过引人入胜的游戏向高中生介绍量子力学的基本概念。技术概要材料研究部和物理部为该职业奖提供资金,支持理论量子多体物理学的综合研究和教育工作。该项目的目标是推进量子多体系统的基本理解,无论是在平衡和动力学过程。 研究重点是强相互作用的系统,并探索新的拓扑现象和多体动力学,这在非相互作用系统中不存在。PI将依靠她以前对精确可解晶格模型的研究,以及场论分析和张量网络数值方法来解决这些问题。特别是,这个项目将集中在以下主题:i)在3D中构建和分析新的离散规范理论,ii)使用耦合层结构解释和推广3D分形量子码中的拓扑顺序,以及随之而来的潜在量子信息应用,iii)用实验可行的测量方案映射扩散和多体定域系统中的Lieb-Robinson光锥。PI将探索强相互作用量子多体系统的非微扰机制,并将寻找全新的普适行为。可能取得的成就包括:i)发现新的3D扭曲规范理论,并理解它们在体和表面上的性质; ii)找到将分形量子码与更传统的拓扑序联系起来的广义拓扑相图,并构建更多可以作为量子存储器的物理模型;(3)理解各种相关器测量在检测扩散或多体局域系统中的信息传播的能力,并找到实验上可行的装置来实现这种测量。此外,作为该项目教育部分的一部分,PI的目标是通过开发一门新的课程,将量子力学和量子多体物理学的新概念融入到推广和教育活动中,为高年级本科生和研究生举办“多体纠缠和拓扑相位”,并为当地高中生组织“量子国际象棋”锦标赛,其中很大一部分学生来自代表性不足的群体。比赛的目标是通过引人入胜的游戏向高中生介绍量子力学的基本概念。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fracton topological order from the Higgs and partial-confinement mechanisms of rank-two gauge theory
来自希格斯粒子的分形拓扑序和二阶规范理论的部分限制机制
- DOI:10.1103/physrevb.98.035111
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Ma, Han;Hermele, Michael;Chen, Xie
- 通讯作者:Chen, Xie
Screw dislocations in the X-cube fracton model
- DOI:10.21468/scipostphys.10.4.094
- 发表时间:2020-12
- 期刊:
- 影响因子:5.5
- 作者:Nandagopal Manoj;K. Slagle;Wilbur E. Shirley;Xie Chen
- 通讯作者:Nandagopal Manoj;K. Slagle;Wilbur E. Shirley;Xie Chen
Fractional excitations in foliated fracton phases
叶状分形相中的分数激发
- DOI:10.1016/j.aop.2019.167922
- 发表时间:2019
- 期刊:
- 影响因子:3
- 作者:Shirley, Wilbur;Slagle, Kevin;Chen, Xie
- 通讯作者:Chen, Xie
Fracton phases of matter
- DOI:10.1142/s0217751x20300033
- 发表时间:2020-01
- 期刊:
- 影响因子:1.6
- 作者:M. Pretko;Xie Chen;Yizhi You
- 通讯作者:M. Pretko;Xie Chen;Yizhi You
Twisted foliated fracton phases
- DOI:10.1103/physrevb.102.115103
- 发表时间:2019-07
- 期刊:
- 影响因子:3.7
- 作者:Wilbur E. Shirley;K. Slagle;Xie Chen
- 通讯作者:Wilbur E. Shirley;K. Slagle;Xie Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xie Chen其他文献
Modern literature study of auricular point therapy for primary insomnia
耳穴疗法治疗原发性失眠的现代文献研究
- DOI:
10.1007/s11726-021-1262-8 - 发表时间:
2021-08 - 期刊:
- 影响因子:0.5
- 作者:
Yang Qiuhong;Xie Chen - 通讯作者:
Xie Chen
Towards Universal Speech Discrete Tokens: A Case Study for ASR and TTS
迈向通用语音离散令牌:ASR 和 TTS 案例研究
- DOI:
10.48550/arxiv.2309.07377 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yifan Yang;Feiyu Shen;Chenpeng Du;Ziyang Ma;K. Yu;Daniel Povey;Xie Chen - 通讯作者:
Xie Chen
Atomic-scale investigation on the growth behavior of rod shape ZrB2
棒状 ZrB2 生长行为的原子尺度研究
- DOI:
10.1016/j.ceramint.2019.08.067 - 发表时间:
2019 - 期刊:
- 影响因子:5.2
- 作者:
Song Shaolei;Xie Chen;Li Rong;Ran Songlin;Hu Pengfei;Zhen Qiang;Liu Jingbo;Bashir Sajid - 通讯作者:
Bashir Sajid
Topological defects of 2+1D systems from line excitations in 3+1D bulk
3 1D 体中线激励的 2 1D 系统的拓扑缺陷
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenjie Ji;Xie Chen - 通讯作者:
Xie Chen
The influence of backpressure on severe slugging in multiphase flow pipeline-riser systems
多相流管道立管系统背压对严重段塞的影响
- DOI:
10.1016/j.ces.2017.01.028 - 发表时间:
2017-05 - 期刊:
- 影响因子:4.7
- 作者:
Xie Chen;Guo Liejin;Li Wensheng;Zhou Hongliang;Zou Suifeng - 通讯作者:
Zou Suifeng
Xie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Geometries of Topological Defects in 3D Nematics, from Equilibrium Structure to Active Dynamics
职业:3D 向列学中拓扑缺陷的几何形状,从平衡结构到主动动力学
- 批准号:
2225543 - 财政年份:2022
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Universal Dynamics of Many-Body Quantum Systems Far from Equilibrium
职业:远离平衡的多体量子系统的通用动力学
- 批准号:
2142866 - 财政年份:2022
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Geometries of Topological Defects in 3D Nematics, from Equilibrium Structure to Active Dynamics
职业:3D 向列学中拓扑缺陷的几何形状,从平衡结构到主动动力学
- 批准号:
2046063 - 财政年份:2021
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Probing Non-Equilibrium Dynamics with Ultracold Atoms in Optical, Phononic, and Photonic Lattices
职业:用超冷原子探测光学、声子和光子晶格中的非平衡动力学
- 批准号:
1848316 - 财政年份:2019
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Non-equilibrium Many-Body Dynamics in Topological Quantum Materials
职业:拓扑量子材料中的非平衡多体动力学
- 批准号:
1847078 - 财政年份:2019
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Non-equilibrium quantum dynamics, topology, and criticality
职业:非平衡量子动力学、拓扑和临界性
- 批准号:
1653007 - 财政年份:2017
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Quantum Phases and Dynamics in Strongly Interacting, Non-Equilibrium Systems
职业:强相互作用、非平衡系统中的量子相和动力学
- 批准号:
1654740 - 财政年份:2017
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Non-Equilibrium Coherent Many-Body Dynamics with Cold Atoms
职业:冷原子的非平衡相干多体动力学
- 批准号:
1148957 - 财政年份:2012
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Studies of Dynamics and Control of Quantum Many-Body Systems Far from Equilibrium
职业:远离平衡的量子多体系统的动力学和控制研究
- 批准号:
1147430 - 财政年份:2012
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
CAREER: Quantum Phases and Non-Equilibrium Dynamics of Strongly Correlated Photons
职业:强相关光子的量子相和非平衡动力学
- 批准号:
1055993 - 财政年份:2011
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant