EAGER: New Graph and CSP Algorithms Based on Spectral and SDP Techniques

EAGER:基于谱和 SDP 技术的新图和 CSP 算法

基本信息

  • 批准号:
    1655215
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Techniques from linear algebra have been successful in the development of algorithms for combinatorial problems, especially graph problems, with applications in data analysis, natural language processing, and network science, among others. Such algorithms are known as "spectral" algorithms. Google's PageRank algorithm is an example of a spectral algorithm."Semidefinite programming" (abbreviated SDP) is a technical tool that subsumes spectral algorithms and which has led to several rigorous results and some preliminary practical algorithmic applications. There is reason to believe that further progress could break through certain technical barriers and provide the solution to long-standing open problems. This project explores various approaches that could lead to such breakthroughs. The PI will also continue his ongoing expository work, which has made recent results in this area more accessible to a wider audience. Results from this project have the potential for a broad impact in pure mathematics and the theory of optimization; such a "mathematical technology transfer" will be facilitated by the fact that this project will overlap with a special program on Pseudorandomness at the Simons Institute for the Theory of Computing, co-organized by the PI, and a special program on Optimization also at the Simons Institute, that the PI will be a participant in. Both programs will host scholars from areas outside theoretical computer science whose interests overlap with the potential outcomes of this project.The PI will investigate promising applications of semidefinite programming to graph partitioning problems, to constraint satisfaction problems, and to the Unique Games Conjecture, including the possibility of Lasserre hierarchy SDP relaxations to refute the Unique Games Conjecture, a core open problem in computational complexity theory. In order to avoid or break known barriers to progress, the PI will investigate the power of Lasserre hiearchy relaxations to approximate the sparsest cut problem in special classes of graphs, and the power of Lasserre hierarchy SDP relaxations for constraint satisfaction problems. Spectral methods, which are a special case of Semidefinite Programming, will be used to analyze distributed algorithms, and new types of graph sparsifiers. Outcomes of the project may have applications in computational complexity theory, the theory of pseudorandomness, graph theory, data analysis, and network science.
来自线性代数的技术在组合问题特别是图问题的算法开发中取得了成功,并在数据分析、自然语言处理和网络科学等方面得到了应用。这种算法被称为“谱”算法。Google的PageRank算法就是谱算法的一个例子。半定编程(简称SDP)是一个包含谱算法的技术工具,它已经产生了几个严格的结果和一些初步的实际算法应用。有理由相信,进一步的进展可能会突破某些技术壁垒,为长期悬而未决的问题提供解决方案。这个项目探索了各种可能导致这种突破的方法。国际和平研究所还将继续他正在进行的说明性工作,这使得这一领域的最新成果更容易为更广泛的受众所了解。这一项目的结果有可能对纯数学和最优化理论产生广泛的影响;由于该项目将与西蒙斯计算理论研究所的伪随机性特别计划和西蒙斯研究所的优化特别计划重叠,这一事实将促进这种“数学技术转让”,西蒙斯计算理论研究所是该计划的联合组织,西蒙斯研究所也将参与该计划。这两个项目都将邀请来自理论计算机科学以外领域的学者,他们的兴趣与这个项目的潜在结果重叠。PI将研究半定规划在图划分问题、约束满足问题和唯一博弈猜想中的有前途的应用,包括拉瑟尔层次SDP放松来反驳唯一博弈猜想的可能性,这是计算复杂性理论中的一个核心开放问题。为了避免或打破已知的进展障碍,PI将研究Lasserre层次SDP松弛方法在特殊图类中逼近最稀疏割问题的能力,以及Lasserre层次SDP松弛方法在约束满足问题上的能力。谱方法是半定规划的一个特例,它将被用来分析分布式算法和新型的图稀疏器。该项目的成果可能在计算复杂性理论、伪随机性理论、图论、数据分析和网络科学中得到应用。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Find Your Place: Simple Distributed Algorithms for Community Detection
找到你的位置:用于社区检测的简单分布式算法
Optimal Lower Bounds for Sketching Graph Cuts
绘制图形切割的最佳下界
Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph
An Alon-Boppana Type Bound for Weighted Graphs and Lowerbounds for Spectral Sparsification
  • DOI:
    10.1137/1.9781611975031.85
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Srivastava;L. Trevisan
  • 通讯作者:
    N. Srivastava;L. Trevisan
An Axiomatic and an Average-Case Analysis of Algorithms and Heuristics for Metric Properties of Graphs
  • DOI:
    10.1137/1.9781611974782.58
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michele Borassi;P. Crescenzi;L. Trevisan
  • 通讯作者:
    Michele Borassi;P. Crescenzi;L. Trevisan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Trevisan其他文献

Lecture Notes on Computational Complexity
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luca Trevisan
  • 通讯作者:
    Luca Trevisan
Improved Pseudorandom Generators for Depth 2 Circuits
改进的深度 2 电路伪随机发生器
The Minority Dynamics and the Power of Synchronicity
少数派动态和同步性的力量
  • DOI:
    10.48550/arxiv.2310.13558
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Becchetti;A. Clementi;F. Pasquale;Luca Trevisan;Robin Vacus;Isabella Ziccardi
  • 通讯作者:
    Isabella Ziccardi
A tight characterization of NP with 3 query PCPs
具有 3 个查询 PCP 的 NP 的严格表征
A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
顶点覆盖Lovasz-Schrijver SDP松弛的线性圆下界

Luca Trevisan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Trevisan', 18)}}的其他基金

AF: Small: Spectral and SDP Techniques: Average-Case Analysis and Subexponential Algorithms
AF:小:谱和 SDP 技术:平均情况分析和次指数算法
  • 批准号:
    1815434
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: Graph Partitioning and Spectral Methods
AF:小:图划分和谱方法
  • 批准号:
    1540685
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: Graph Partitioning and Spectral Methods
AF:小:图划分和谱方法
  • 批准号:
    1216642
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
  • 批准号:
    1161812
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
  • 批准号:
    1017403
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Applications of Artihmetic Combinatorics in Computer Science
算术组合在计算机科学中的应用
  • 批准号:
    0729137
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Average-Case Complexity, Derandomization and Inapproximability
平均情况复杂性、去随机化和不可近似性
  • 批准号:
    0515231
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Randomized Computations and Probabilistically Checkable Proofs
职业:随机计算和概率可检查证明
  • 批准号:
    0406156
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Randomized Computations and Probabilistically Checkable Proofs
职业:随机计算和概率可检查证明
  • 批准号:
    9984703
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

New Graph Mining Technologies to Enable Timely Exploration of Social Events
新的图挖掘技术能够及时探索社交事件
  • 批准号:
    DP230100899
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
  • 批准号:
    2321504
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
New Approaches for Dynamic Graph Anomaly Detection, Prediction, and Explanation
动态图异常检测、预测和解释的新方法
  • 批准号:
    2213658
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Developing new tools in community detection and graph-based signal analysis
开发社区检测和基于图形的信号分析的新工具
  • 批准号:
    2784491
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
New Algorithms for Parameterized Graph Problems
参数化图问题的新算法
  • 批准号:
    2743968
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
  • 批准号:
    559027-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
  • 批准号:
    559027-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Some new results in graph representation learning
图表示学习的一些新成果
  • 批准号:
    2592879
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Discovery of new graph invariants to capture the cycle ctructure
发现新的图不变量来捕获循环结构
  • 批准号:
    20K11684
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了