AF: Small: Graph Partitioning and Spectral Methods
AF:小:图划分和谱方法
基本信息
- 批准号:1216642
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algorithms based on spectral techniques tend to be fast and to have a simple and elegant structure; their analysis helps explain the empirically good performance of related heuristics that are adopted in practice; and their analysis often uncovers useful mathematical relationships between algebraic and combinatorial graph invariants, which can have useful applications outside of algorithm design. The research supported by this grant explores new algorithms for cut and clustering problems, rigorous justifications for popular spectral clustering heuristics, and various relationships between the spectral profile of a graph and its combinatorial properties. The PI and his collaborators will study the use of multiple eigenvectors of the Laplacian matrix of a graph in the design of clustering algorithms, they will provide rigorous analyses of clustering heuristics based on multiple eigenvectors, and will explore combinatorial characterizations of eigenvalue near-multiplicities. New approaches to the use of random walks and other probabilistic processes will be explored in the design of graph partitioning algorithms.The PI is working on a monograph on the three related themes of sparsest cut approximation algorithms, constructions of expander graphs, and analysis of random walks in graphs. The three topics are closely related mathematically, but they are pursued by largely distinct community; the monograph will emphasize the connection and encourage researchers in each of the three areas to pursue research in the others.
基于谱技术的算法往往是快速的,并具有简单而优雅的结构;它们的分析有助于解释在实践中采用的相关算法的经验良好的性能;它们的分析往往揭示了代数和组合图不变量之间的有用的数学关系,这可以在算法设计之外有有用的应用。这项研究资助的探索新的算法切割和聚类问题,严格的理由流行的谱聚类算法,和各种关系之间的谱曲线图和它的组合属性。PI及其合作者将研究在聚类算法设计中使用图的拉普拉斯矩阵的多重特征向量,他们将提供基于多重特征向量的聚类算法的严格分析,并将探索特征值接近多重性的组合特征。新的方法来使用随机游走和其他概率过程将探讨在设计的图形分割algorithm.The PI是一个专着上的三个相关主题的稀疏割近似算法,建设的扩展图,并分析随机游走的图形。这三个主题在数学上是密切相关的,但它们在很大程度上是由不同的社区追求的;专著将强调这三个领域中的每一个的联系,并鼓励研究人员在其他领域进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Trevisan其他文献
Lecture Notes on Computational Complexity
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Luca Trevisan - 通讯作者:
Luca Trevisan
Improved Pseudorandom Generators for Depth 2 Circuits
改进的深度 2 电路伪随机发生器
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Anindya De;Omid Etesami;Luca Trevisan;Madhur Tulsiani - 通讯作者:
Madhur Tulsiani
The Minority Dynamics and the Power of Synchronicity
少数派动态和同步性的力量
- DOI:
10.48550/arxiv.2310.13558 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Becchetti;A. Clementi;F. Pasquale;Luca Trevisan;Robin Vacus;Isabella Ziccardi - 通讯作者:
Isabella Ziccardi
A tight characterization of NP with 3 query PCPs
具有 3 个查询 PCP 的 NP 的严格表征
- DOI:
10.1109/sfcs.1998.743424 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
V. Guruswami;Daniel Lewin;Madhu Sudan;Luca Trevisan - 通讯作者:
Luca Trevisan
A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
顶点覆盖Lovasz-Schrijver SDP松弛的线性圆下界
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Grant Schoenebeck;Luca Trevisan;Madhur Tulsiani - 通讯作者:
Madhur Tulsiani
Luca Trevisan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Trevisan', 18)}}的其他基金
AF: Small: Spectral and SDP Techniques: Average-Case Analysis and Subexponential Algorithms
AF:小:谱和 SDP 技术:平均情况分析和次指数算法
- 批准号:
1815434 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: New Graph and CSP Algorithms Based on Spectral and SDP Techniques
EAGER:基于谱和 SDP 技术的新图和 CSP 算法
- 批准号:
1655215 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Graph Partitioning and Spectral Methods
AF:小:图划分和谱方法
- 批准号:
1540685 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
- 批准号:
1161812 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
AF: Small: Unconditional Lower Bounds in Approximability and Cryptography
AF:小:近似性和密码学的无条件下界
- 批准号:
1017403 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Applications of Artihmetic Combinatorics in Computer Science
算术组合在计算机科学中的应用
- 批准号:
0729137 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Average-Case Complexity, Derandomization and Inapproximability
平均情况复杂性、去随机化和不可近似性
- 批准号:
0515231 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Randomized Computations and Probabilistically Checkable Proofs
职业:随机计算和概率可检查证明
- 批准号:
0406156 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Randomized Computations and Probabilistically Checkable Proofs
职业:随机计算和概率可检查证明
- 批准号:
9984703 - 财政年份:2000
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310411 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithms for Graph-Based Codes
NSF-BSF:AF:小型:基于图形的代码算法
- 批准号:
2133154 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Algorithms meet Structural Graph Decomposition
AF:小:算法满足结构图分解
- 批准号:
2008838 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Graph Theory and Its Uses in Algorithms and Beyond
AF:小:图论及其在算法及其他领域的应用
- 批准号:
2006464 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Reeb graph flows: Metrics, Drawings, and Analysis
AF:小型:协作研究:Reeb 图流:指标、绘图和分析
- 批准号:
1907591 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: New Challenges in Graph Stream Algorithms and Related Communication Games
AF:小:协作研究:图流算法和相关通信游戏的新挑战
- 批准号:
1907738 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




