A Bayesian statistical approach to determine whether genetic data delimits species versus populations

用于确定遗传数据是否区分物种与种群的贝叶斯统计方法

基本信息

项目摘要

The unprecedented amount of DNA sequence data made available by recent technological advances is changing how biologists identify species. Such data have great power to reveal the boundaries separating species. However, with increased amounts of sequence data, the genetic differences that are detected are not just associated with species boundaries, but include genetic differences among populations within species. As a consequence, species boundaries are misidentified, which has profound implications across biology because species are the basic unit of reference for framing biological questions. This project data will develop analytical methods to avoid conflating the boundaries of species with the local population structure within them. It will use computer simulations to evaluate key data properties affecting the accuracy of species detection, as well as the performance of the new method, especially when different processes give rise to the formation of new species. These simulations will be informed by examples from nature, assuring that biological realities, not just theoretical ideals, are jointly considered. A diverse team of researchers with complementary skill sets will advance both the scientific goals and outreach activities, which range from developing educational instruments for the public and policy makers to the training of students involved in biodiversity research. Current genetic-based species delimitation methods can potentially lead to mass overestimates of biodiversity by treating population and species divergence as statistically equivalent. The proposed research will address these limitations. Under the new modeling approach for species delimitation, for the first time speciation is modeled as an extended process, as opposed to being treated as an instantaneous event, and as such, this approach can be used to gain insights about the diversification process itself as well. Specifically, the new approach will couple the multispecies coalescent with different diversification models for Bayesian statistical inference to avoid conflating population and species distinctiveness. The approach will be disseminated in a free software package DELIMIT and developed with reference to existing empirical data, specifically, genomic datasets of Australian squamates. Many of these genera show extraordinarily deep phylogeographic structure across thousands of loci within currently recognized species, suggesting substantial underestimation of species diversity, whereas other genera represent recent adaptive radiations, such that the empirical systems span a range of speciation processes. This context will be used to assess how robust inferred species boundaries are to different diversification processes, but also validate inferences from DELIMIT regarding the speciation process itself by testing for a general correspondence with non-genetic information about the speciation process.
最近的技术进步提供了前所未有的大量DNA序列数据,正在改变生物学家识别物种的方式。这些数据具有很大的力量来揭示物种之间的界限。然而,随着序列数据量的增加,检测到的遗传差异不仅与物种边界有关,还包括物种内种群之间的遗传差异。因此,物种边界被错误识别,这对整个生物学产生了深远的影响,因为物种是构建生物学问题的基本参考单位。该项目数据将开发分析方法,以避免将物种的边界与其中的当地种群结构混为一谈。它将使用计算机模拟来评估影响物种检测准确性的关键数据属性,以及新方法的性能,特别是当不同过程导致新物种形成时。这些模拟将通过自然界的例子来提供信息,确保生物现实,而不仅仅是理论理想,被共同考虑。一个由具有互补技能的研究人员组成的多元化团队将推动科学目标和外联活动,范围从为公众和决策者开发教育工具到培训参与生物多样性研究的学生。目前基于遗传学的物种划界方法可能会导致生物多样性的大规模高估,将种群和物种的差异视为统计学上的等价物。拟议的研究将解决这些限制。根据新的建模方法的物种界定,第一次物种形成被建模为一个扩展的过程,而不是被视为一个瞬时事件,因此,这种方法可以用来获得有关多样化过程本身的见解。具体来说,新方法将耦合多物种的聚结与不同的多样化模型贝叶斯统计推断,以避免混淆人口和物种的独特性。该方法将在一个免费软件包DELIMIT中传播,并参考现有的经验数据,特别是澳大利亚有鳞目动物的基因组数据集进行开发。这些属中的许多属在目前公认的物种中的数千个位点上显示出非常深的物种地理结构,这表明物种多样性被大大低估,而其他属则代表了最近的适应性辐射,因此经验系统跨越了一系列的物种形成过程。这种情况下,将被用来评估如何强大的推断物种边界是不同的多样化过程,但也验证推断DELIMIT关于物种形成过程本身的测试与非遗传信息的物种形成过程的一般对应关系。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

L. Lacey Knowles其他文献

Geographic distributions, phenotypes, and phylogenetic relationships of <em>Phalloceros</em> (Cyprinodontiformes: Poeciliidae): Insights about diversification among sympatric species pools
  • DOI:
    10.1016/j.ympev.2018.12.008
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andréa T. Thomaz;Tiago P. Carvalho;Luiz R. Malabarba;L. Lacey Knowles
  • 通讯作者:
    L. Lacey Knowles
Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model-Choice By Simulation-Trained Discriminant Analysis
来自生物模式的机器学习生物地理过程:一种新的性状依赖型扩散和多样化模型,通过模拟训练判别分析进行模型选择
  • DOI:
    10.1101/021303
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeet Sukumaran;Evan P. Economo;L. Lacey Knowles
  • 通讯作者:
    L. Lacey Knowles
Resolving Species Phylogenies of Recent Evolutionary Radiations1
解析近期进化辐射的物种系统发育1
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Lacey Knowles;Yat
  • 通讯作者:
    Yat
Trait-Dependent Biogeography: (Re)Integrating Biology into Probabilistic Historical Biogeographical Models.
性状相关的生物地理学:(重新)将生物学整合到概率历史生物地理学模型中。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Jeet Sukumaran;L. Lacey Knowles
  • 通讯作者:
    L. Lacey Knowles
Hybridization boosters diversification in a Neotropical Bulbophyllum (Orchidaceae) group.
杂交促进了新热带球藻属(兰科)群体的多样化。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Cecilia F Fiorini;Eric de Camargo Smidt;L. Lacey Knowles;E. Leite Borba
  • 通讯作者:
    E. Leite Borba

L. Lacey Knowles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('L. Lacey Knowles', 18)}}的其他基金

Collaborative Research: Testing Hypotheses about Rates of Diversification & Controls on Diversification related to the Opportunities for Speciation vs Fate of Incipient Diverge
合作研究:检验有关多元化率的假设
  • 批准号:
    2114070
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Digitization TCN: Extending Anthophila research through image and trait digitization (Big-Bee)
合作研究:数字化 TCN:通过图像和性状数字化扩展 Anthophila 研究(Big-Bee)
  • 批准号:
    2101345
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Speciation, niche divergence, and character displacement at multiple scales in Lasiopogon robber flies (Diptera: Asilidae)
论文研究:Lasiopogon 强盗蝇(双翅目:Asilidae)的物种形成、生态位分歧和多个尺度的特征位移
  • 批准号:
    1601389
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Can the degree of mimicry predict levels of genetic structure among populations? A test using mimetic ground beetles
论文研究:拟态程度可以预测人群之间的遗传结构水平吗?
  • 批准号:
    1601260
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Riverscape genetics: testing the role of river properties with population-genetic models in Neotropical freshwater fishes
论文研究:河流景观遗传学:用种群遗传模型测试河流特性在新热带淡水鱼类中的作用
  • 批准号:
    1501301
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: The species versus subspecies conundrum: quantitative assessment from integrating multiple data types under a single Bayesian framework in Hercules beetles
论文研究:物种与亚种难题:在大力神甲虫的单一贝叶斯框架下整合多种数据类型的定量评估
  • 批准号:
    1501462
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Tests of parallel divergence processes in montane plants: links between population differentiation and species diversity patterns
论文研究:山地植物平行分化过程的测试:种群分化与物种多样性模式之间的联系
  • 批准号:
    1309072
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Adaptive divergence in Anopheles gambiae (with gene flow): facilitation via chromosomal inversions
论文研究:冈比亚按蚊的适应性分化(基因流):通过染色体倒位促进
  • 批准号:
    1210359
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Identifying the Utility of Species-Tree Approaches for Deep Radiations
确定物种树方法在深辐射中的效用
  • 批准号:
    1118815
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Estimating Species Trees with Population Genetic Approaches: Working Towards a New Phylogenetic Paradigm for 21st Century Phylogenetics
合作研究:用群体遗传学方法估计物种树:为 21 世纪系统发育学建立新的系统发育范式
  • 批准号:
    0918218
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Estimating vital rates in the developing world: A Bayesian process modeling approach
估计发展中国家的生命率:贝叶斯过程建模方法
  • 批准号:
    9061759
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
Estimating vital rates in the developing world: A Bayesian process modeling approach
估计发展中国家的生命率:贝叶斯过程建模方法
  • 批准号:
    9242516
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
CRCNS: Bayesian inference in spiking sensory neurons
CRCNS:尖峰感觉神经元的贝叶斯推理
  • 批准号:
    8837236
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
CRCNS: Bayesian inference in spiking sensory neurons
CRCNS:尖峰感觉神经元的贝叶斯推理
  • 批准号:
    9124841
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
Statistical estimation of non-regular case by Bayesian approach
贝叶斯方法对非常规情况的统计估计
  • 批准号:
    22740053
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Application of Bayesian Methods in Multilevel and Logitudinal Mediation Models
贝叶斯方法在多层次纵向中介模型中的应用
  • 批准号:
    7900996
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
Application of Bayesian Methods in Multilevel and Logitudinal Mediation Models
贝叶斯方法在多层次纵向中介模型中的应用
  • 批准号:
    7752931
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
Comprehensive Prognostic Modeling for Esophageal Cancer: A Bayesian Approach
食管癌的综合预后模型:贝叶斯方法
  • 批准号:
    7740133
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
Comprehensive Prognostic Modeling for Esophageal Cancer: A Bayesian Approach
食管癌的综合预后模型:贝叶斯方法
  • 批准号:
    7862570
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
A theoretical approach to Bayesian statistical inference by a special shrinkage prior distribution
通过特殊收缩先验分布进行贝叶斯统计推断的理论方法
  • 批准号:
    21740065
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了