SemiSynBio-III: Novel Memory Devices for High-Density Data Storage and In-Memory Computing Based on Integrated Synthetic DNA-Semiconductors
SemiSynBio-III:基于集成合成 DNA 半导体的用于高密度数据存储和内存计算的新型存储设备
基本信息
- 批准号:2227484
- 负责人:
- 金额:$ 140.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-volatile memory (NVM) devices are used to store data in smartphones, tablets, computers, hardware for Internet of Things, wireless routers and communication systems, and other electronic devices. In addition, NVMs also have applications in computing hardware to accelerate Artificial Intelligence and Machine Learning algorithms. However, currently available memory devices have limitations and novel techniques for storing tremendous amount of data that can surpass the density of data storage by a thousand-fold or more needs investigation. Storing data in synthetic-DNA is a promising route as it is the densest known storage medium with the information encoded lasting forever in a conducive environment. However, purely DNA-storage is based on a chemical nature that imposes its own set of challenges such as high-cost, read error, and incompatibility with Complementary Metal Oxide Semiconductor (CMOS) integrated circuits (ICs). The bottleneck with DNA-storage is its efficiency, as it is million times slower than the timescales in a silicon memory chip. Considering the time- & effort-consuming coding/decoding process for typical DNA molecular memory, as well as its volatile nature due to polymerization-based sequencing-identified coding mechanism, simply using DNA as a medium for information coding remains technically inefficient. The issues limiting DNA usage for data storage can be addressed if an appropriate medium to host synthetic-DNA can be synergistically designed to control subtle inter-molecular interaction to generate multiple states and the devices based on this biomaterial can be integrated with CMOS ICs. Organometallic halide perovskite (OHP) semiconductors provide a promising host material to support DNA due to process compatibility leading to the development of novel OHP-DNA-biomaterials based high-density memory arrays. This research will address grand-challenges of exploring novel concepts of integrating DNA-Semiconductor biomolecular complexes for high-density data storage on traditional semiconductor platforms. The project will provide significant opportunities for multi-disciplinary training of graduate and undergraduate students from diverse backgrounds by developing a new course to be offered at University of Cincinnati (UC) and Penn State University (PSU) for advancing the next generation of computing based on biomolecular complexes beyond just traditional semiconductors. Existing University programs like G-FEST and NERDS will be leveraged to support high-school and middle school outreach efforts at UC and PSU. The objective of this proposal is to develop high-density memory devices based on hybrid OHP and synthetic-DNA biomaterials and demonstrate its application for data-storage and In-Memory Computing (IMC) in integrated optoelectronic systems with CMOS-back-end. DNA provides tremendous opportunities to tune its properties by modifying the parameters such as base-pairs, sequence, length, rotation, and crystallinity for electrical and optical properties in a hybrid OHP-DNA memory device. Specific aims of the project include: 1. Modeling, design, and synthesis of specific DNA sequences for integration with OHP semiconductor; 2. Development of OHP-DNA biomaterials and characterization; 3. Development of OHP-DNA-based high-density memory devices and integration with OHP-optoelectronic systems and CMOS Back-End of Line (BEOL). Collaborative team between the University of Cincinnati (UC) and Penn State University (PSU) has expertise and state of the art resources necessary to successfully complete the proposed aims. A successful completion will lead to (i) fundamental understanding of communications between synthetic-DNA and OHP and methods for tailoring OHP in conjunction with DNA engineering to achieve high-density multi-state NVMs, (ii) routes to synthesize OHP-DNA biomaterials capable of data storage, (iii) ICs with integrated OHP-DNA memory devices with CMOS in back-end and approaches for computing and data-storage. These results will have transformative impacts on providing novel DNA-based technologies for future data storage needs.This project has been jointly funded by Division of Molecular and Cellular Biosciences (MCB) in the Directorate for Biological Sciences (BIO), Division of Computing and Communication Foundations (CCF) in the Directorate for Computer and Information Science and Engineering (CISE), Division of Electrical, Communications and Cyber Systems (ECCS) in the Directorate for Engineering (ENG), and the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非易失性存储器(NVM)设备用于在智能手机、平板电脑、计算机、物联网硬件、无线路由器和通信系统以及其他电子设备中存储数据。此外,NVM还在计算硬件方面有应用,以加速人工智能和机器学习算法。然而,当前可用的存储设备具有存储海量数据的局限性和新颖的技术,其可以超过数据存储密度一千倍或更多需要调查。在合成DNA中存储数据是一条很有前途的路线,因为它是已知密度最高的存储介质,信息在有利的环境中永久编码。然而,纯粹的DNA存储是基于化学性质的,这带来了一系列挑战,如高成本、读取错误以及与互补金属氧化物半导体(CMOS)集成电路(IC)的不兼容。DNA存储的瓶颈是它的效率,因为它比硅存储芯片中的时间尺度慢数百万倍。考虑到典型DNA分子存储器的编码/解码过程耗时费力,以及基于聚合的测序识别编码机制的易失性,简单地使用DNA作为信息编码的媒介在技术上仍然是低效的。限制DNA用于数据存储的问题可以解决,如果能够协同设计合适的介质来容纳合成DNA,以控制微妙的分子间相互作用来产生多个状态,并且基于这种生物材料的设备可以与CMOSIC集成。有机金属卤化物钙钛矿(OHP)半导体由于工艺兼容性为DNA提供了一种很有前途的载体材料,这导致了基于OHP-DNA生物材料的新型高密度存储阵列的发展。这项研究将解决探索在传统半导体平台上集成DNA-半导体生物分子复合体用于高密度数据存储的新概念的重大挑战。该项目将为来自不同背景的研究生和本科生提供重要的多学科培训机会,开发一门将在辛辛那提大学(UC)和宾夕法尼亚州立大学(PSU)开设的新课程,以推动基于生物分子化合物的下一代计算,而不仅仅是传统的半导体。现有的大学项目,如G-FEST和书呆子,将被用来支持加州大学和巴黎州立大学的高中和中学外展工作。该方案的目标是开发基于混合OHP和合成DNA生物材料的高密度存储器件,并展示其在具有CMOS后端的集成光电系统中的数据存储和内存计算(IMC)方面的应用。在混合OHP-DNA存储器件中,通过改变碱基对、序列、长度、旋转度和结晶度等参数,DNA提供了调整其性质的巨大机会。该项目的具体目标包括:1.与OHP半导体集成的特定DNA序列的建模、设计和合成;2.OHP-DNA生物材料的开发和表征;3.基于OHP-DNA的高密度存储器件的开发以及与OHP-光电系统和CMOS线后(BEOL)的集成。辛辛那提大学(UC)和宾夕法尼亚州立大学(PSU)之间的合作团队拥有成功完成拟议目标所需的专业知识和最先进的资源。成功的完成将导致(I)基本了解合成DNA和OHP之间的通信以及结合DNA工程定制OHP以实现高密度多态NVM的方法,(Ii)合成能够存储数据的OHP-DNA生物材料的途径,(Iii)具有集成的OHP-DNA存储设备的集成电路,以及计算和数据存储的方法。这些结果将对为未来的数据存储需求提供新的基于DNA的技术产生革命性的影响。该项目由生物科学局(BIO)的分子和细胞生物科学部(MCB)、计算机和信息科学与工程局(CEISE)的计算和通信基础司(CCF)、工程局(ENG)的电气、通信和网络系统(ECCS)共同资助。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rashmi Jha其他文献
An Evaluation Index System based on Students' Behavior Characteristics based on Data Mining Technology
基于数据挖掘技术的学生行为特征评价指标体系
- DOI:
10.1109/icc-robins60238.2024.10533929 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rashmi Jha - 通讯作者:
Rashmi Jha
A Swift Classification of Attitude for Natural English Text Corpus
自然英语文本语料库态度的快速分类
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Rashmi Jha;Mahima Tomar - 通讯作者:
Mahima Tomar
Ascorbate recycling by erythrocytes during aging in humans.
人类衰老过程中红细胞回收抗坏血酸。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:2.6
- 作者:
S. Rizvi;K. Pandey;Rashmi Jha;P. Maurya - 通讯作者:
P. Maurya
Clinical and Microbiological Evaluation of Diode Laser and Systemic Doxycycline as an Additive to Scaling and Root Planing for Stage II and Stage III Periodontitis Patients
二极管激光和全身强力霉素作为 II 期和 III 期牙周炎患者洗牙和根面平整的添加剂的临床和微生物学评价
- DOI:
10.7759/cureus.56509 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tapaswi A Kamble;N. C. Deshpande;Monali Shah;Rashmi Jha;Aayushi Shah - 通讯作者:
Aayushi Shah
Association Rules Mining for Business Intelligence
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.2
- 作者:
Rashmi Jha - 通讯作者:
Rashmi Jha
Rashmi Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rashmi Jha', 18)}}的其他基金
Workshop on Devices-to-Systems for In-Memory Computing, being held Virtual at the University of Cincinnati, Cincinnati, Ohio, May 11-12, 2021.
内存计算设备到系统研讨会,将于 2021 年 5 月 11 日至 12 日在俄亥俄州辛辛那提大学虚拟举行。
- 批准号:
2128685 - 财政年份:2021
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
Gated Synaptic Memory Devices with Adaptive Short-Term States for Neuromorphic Computing
用于神经形态计算的具有自适应短期状态的门控突触存储设备
- 批准号:
1926465 - 财政年份:2019
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
- 批准号:
1718428 - 财政年份:2017
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
- 批准号:
1556301 - 财政年份:2015
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
CAREER:Novel Nanoelectronic Reconfigurable Synaptic Memory Devices
职业:新型纳米电子可重构突触存储设备
- 批准号:
1556294 - 财政年份:2015
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
- 批准号:
1441733 - 财政年份:2014
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
CAREER:Novel Nanoelectronic Reconfigurable Synaptic Memory Devices
职业:新型纳米电子可重构突触存储设备
- 批准号:
1254271 - 财政年份:2013
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
I-Corps: High Density Memristive Devices for Non-Volatile Memory Applications
I-Corps:用于非易失性存储器应用的高密度忆阻器件
- 批准号:
1242417 - 财政年份:2012
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
BRIGE: Transition Metal Oxide Based Multifunctional Nanoelectronic Memristor Devices
BRIGE:基于过渡金属氧化物的多功能纳米电子忆阻器器件
- 批准号:
1125743 - 财政年份:2011
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 140.85万 - 项目类别:
Identification of novel type III IFN regulatory pathways
新型 III 型干扰素调节途径的鉴定
- 批准号:
10714232 - 财政年份:2023
- 资助金额:
$ 140.85万 - 项目类别:
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
- 批准号:
479527 - 财政年份:2023
- 资助金额:
$ 140.85万 - 项目类别:
Operating Grants
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
- 批准号:
10568744 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
- 批准号:
472825 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
Operating Grants
Characterization of a Novel E. coli Type III Secretion System Associated with Increased Patient Mortality
与患者死亡率增加相关的新型大肠杆菌 III 型分泌系统的表征
- 批准号:
10506437 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
Targeting aldose reductase: A Phase IIb/III trial for the novel use of Epalrestat to treat Congenital Disorders of Glycosylation (PMM2-CDG)
靶向醛糖还原酶:依帕司他新用途治疗先天性糖基化障碍 (PMM2-CDG) 的 IIb/III 期试验
- 批准号:
10480649 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
Characterization of a Novel E. coli Type III Secretion System Associated with Increased Patient Mortality
与患者死亡率增加相关的新型大肠杆菌 III 型分泌系统的表征
- 批准号:
10643910 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
Targeting aldose reductase: A Phase IIb/III trial for the novel use of Epalrestat to treat Congenital Disorders of Glycosylation (PMM2-CDG)
靶向醛糖还原酶:依帕司他新用途治疗先天性糖基化障碍 (PMM2-CDG) 的 IIb/III 期试验
- 批准号:
10616658 - 财政年份:2022
- 资助金额:
$ 140.85万 - 项目类别:
III: Small: Temporal Relational Triples, or TR2: A Novel Data and Knowledge System for Temporal and Streaming Data
III:小:时态关系三元组,或 TR2:用于时态和流数据的新颖数据和知识系统
- 批准号:
2124704 - 财政年份:2021
- 资助金额:
$ 140.85万 - 项目类别:
Standard Grant