CRII: SHF: Improving Programmability of GPGPU/NVRAM Integrated Systems with Holistic Architectural Support

CRII:SHF:通过整体架构支持提高 GPGPU/NVRAM 集成系统的可编程性

基本信息

  • 批准号:
    1657333
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In the era of big data, the industry faces growing demand for higher computing power and large-capacity high performance storage. GPGPU and NVRAM are two prominent technologies that will play the key role in the "Big Data revolution". This project, which holistically improves the programmability of GPGPU/NVRAM integrated systems, tackles the "programmability bottleneck" faced in GPGPU and NVRAM. It will make it easier to develop correct applications in GPGPU and NVRAM with high performance. As a result, the project will enforce the desire of applying GPGPUs and NVRAM into a wide-range of HPC and big data applications which could then gain hundreds times speedup while ensuring recoverability. Overall, the outcomes of this project will help ensure the sustainable performance to support the supercomputing/big data processing in science and engineering (e.g. finance, medical, biology, petroleum, aerospace, and geology). This project will also contribute to society through engaging high-school and undergraduate students from minority-serving institutions into research, attracting women and under-represented groups into graduate education, expanding the computer engineering curriculum with GPGPU/NVRAM architectures, disseminating research infrastructure for education and training, and collaborating with the industry.This research investigates synergetic approaches and techniques to holistically improve the programmability of GPGPU/NVRAM integrated systems with the following techniques: (1) Timestamp-Based GPU Coherence Protocol. It avoids storage overhead by not storing sharing states (e.g. Shared, Modified, Exclusive, etc.) and the list of sharers. It reduces the traffic overhead by not sending explicit invalidation messages. (2) Integration of Persistency and the Scoped-Synchronization. This research aims to study the new notion of Persistent Scope (PS) , which incorporates the necessary persistency semantics into the existing scoped-synchronization in GPGPU programming models. Efficient architecture design that fully decouples consistency and persistency will be explored. (3) Data Sharing-Aware CTA Scheduler and Cache Management. This research plans to investigate a sharing-aware CTA scheduler that attempts to assign CTAs with data sharing to the same SM to improve temporal and spatial locality.
在大数据时代,行业面临着对更高计算能力和大容量高性能存储的日益增长的需求。GPGPU和NVRAM是两项突出的技术,将在“大数据革命”中发挥关键作用。该项目从整体上提高了GPGPU/NVRAM集成系统的可编程性,解决了GPGPU和NVRAM所面临的可编程性瓶颈。这将使在高性能的GPGPU和NVRAM中开发正确的应用程序变得更容易。因此,该项目将推动将GPGPU和NVRAM应用于广泛的HPC和大数据应用程序的愿望,这些应用程序可以在确保可恢复性的同时获得数百倍的加速。总体而言,该项目的成果将有助于确保可持续的性能,以支持科学和工程(如金融、医学、生物、石油、航空航天和地质)的超级计算/大数据处理。该项目还将通过吸引少数族裔服务机构的高中生和本科生参与研究,吸引女性和代表不足的群体进入研究生教育,利用GPGPU/NVRAM架构扩展计算机工程课程,传播用于教育和培训的研究基础设施,以及与行业合作,为社会做出贡献。本研究探讨了通过以下技术全面提高GPGPU/NVRAM集成系统可编程性的协同方法和技术:(1)基于时间戳的GPU一致性协议。它通过不存储共享状态(例如,共享、修改、独占等)来避免存储开销和分享者的名单。它通过不发送显式无效消息来减少流量开销。(2)持久化与作用域同步的结合。本研究旨在研究持久化作用域的新概念,它将必要的持久化语义融入到现有的GPGPU编程模型中的作用域同步中。将探索完全分离一致性和持久性的高效体系结构设计。(3)支持数据共享的CTA调度器和缓存管理。这项研究计划研究一种共享感知的CTA调度器,该调度器试图将具有数据共享的CTA分配给相同的SM,以改善时间和空间局部性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuehai Qian其他文献

Response characterization on the microstructure, and mechanical and corrosion behavior of clad rebars of different weld materials
不同焊接材料包覆钢筋的微观结构、力学性能和腐蚀行为的响应特性
  • DOI:
    10.1016/j.cscm.2025.e04316
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Zecheng Zhuang;Xuehai Qian;Lei Zeng;Weiping Lu;Zhen Li;Yong Xiang
  • 通讯作者:
    Yong Xiang
Effects of varying weld speeds on the microstructure, mechanical properties, and corrosion behavior of clad rebars in a marine environment
不同焊接速度对海洋环境中复合钢筋的微观结构、力学性能和腐蚀行为的影响
  • DOI:
    10.1038/s41598-025-08448-7
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Zecheng Zhuang;Weiping Lu;Zhe Gou;Lei Zeng;Xuehai Qian;Rifeng Wang;Erte Lin;Zhen Li;Yong Xiang;Jianping Tan
  • 通讯作者:
    Jianping Tan
Graph Transformer for Quantum Circuit Reliability Prediction
用于量子电路可靠性预测的图形变压器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanrui Wang;Pengyu Liu;Jinglei Cheng;Zhiding Liang;Jiaqi Gu;Zi;Yongshan Ding;Weiwen Jiang;Yiyu Shi;Xuehai Qian;D. Pan;F. Chong;Song Han
  • 通讯作者:
    Song Han
RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training
RobustState:通过噪声感知变分训练提高量子态准备的保真度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanrui Wang;Yilian Liu;Pengyu Liu;Jiaqi Gu;Zi;Zhiding Liang;Jinglei Cheng;Yongshan Ding;Xuehai Qian;Yiyu Shi;David Z. Pan;Frederic T. Chong;Song Han
  • 通讯作者:
    Song Han
Efficient Performance Estimation and Work-Group Size Pruning for OpenCL Kernels on GPUs
GPU 上 OpenCL 内核的高效性能估计和工作组大小修剪
  • DOI:
    10.1109/tpds.2019.2958343
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiebing Wang;Xuehai Qian;Alois Knoll;Kai Huang
  • 通讯作者:
    Kai Huang

Xuehai Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuehai Qian', 18)}}的其他基金

SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2333645
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    2331038
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
  • 批准号:
    2127543
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919289
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
  • 批准号:
    1750656
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Accelerating Graph Processing with Vertically Integrated Programming Model, Runtime and Architecture
SHF:小型:利用垂直集成编程模型、运行时和架构加速图形处理
  • 批准号:
    1717754
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
  • 批准号:
    1717984
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2017 International Conference on Architecture Support for Programming Languages and Operating Systems (ASPLOS)
2017 年编程语言和操作系统架构支持国际会议 (ASPLOS) 的学生旅行支持
  • 批准号:
    1720467
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2403747
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SHF: Model-Based Repair of Cyber-Physical Systems for Improving Resiliency
CRII:SHF:基于模型的网络物理系统修复以提高弹性
  • 批准号:
    2245853
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
  • 批准号:
    2233893
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2211453
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Medium: Automated Software Engineering Techniques for Improving the Accessibility of Software
SHF:中:用于提高软件可访问性的自动化软件工程技术
  • 批准号:
    2211790
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2211454
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Medium: Improving the Efficiency and Applicability of Decision Diagrams
SHF:中:提高决策图的效率和适用性
  • 批准号:
    2212142
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis
合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法
  • 批准号:
    2008905
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis
合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法
  • 批准号:
    2007314
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SHF: Improving the Retention of Newcomers in FLOSS Projects With Useful and Timely Code Reviews
CRII:SHF:通过有用且及时的代码审查来提高 FLOSS 项目中新人的保留率
  • 批准号:
    1850475
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了