I-Corps: Translation potential of using provenance-based threat detection for improving cybersecurity
I-Corps:使用基于来源的威胁检测来提高网络安全的转化潜力
基本信息
- 批准号:2424261
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact of this I-Corps project is the development of technology for securing computer workstations and servers from attack. The approach based on the historical record that traces data from its original source to its current location (called data provenance analysis). Securing endpoint computers is a vital component of enterprise security. Current solutions adopt a strategy for detecting attacks by comparing endpoint activity to a set of detection rules that describe common attack behaviors. However, this is an error prone practice, leading to large volumes of false alerts while failing to detect sophisticated attacks. In addition, the maintenance requirements of investigating these false alerts pose a formidable challenge within smaller to medium-sized businesses (SMBs), which lack the necessary security resources and personnel. This impediment is even more visible within SMBs housing sensitive user data, where a security breach can have profound and enduring financial and societal consequences. This technology may be used to establish data provenance analysis as a more precise and practical means of detecting attacks on endpoints. In addition, this solution may save U.S. companies millions of dollars by thwarting attacks that could have otherwise resulted in the compromise of customer data.This I-Corps project utilizes experiential learning coupled with a first-hand investigation of the industry ecosystem to assess the translation potential of the technology. The solution is based on the development of analysis of data provenance to ensure cyber security. Data provenance techniques incrementally parse individual endpoint events (e.g., process executions and file accesses) into a causal dependency graph that describes the history of system execution. The graphical representation of endpoint activity highlights the relationships between objects, making it easier to identify suspicious activities. A key finding of this research is a method of overcoming the inherent architectural limitations in the machine learning models used to analyze data provenance graphs. Leveraging this method, a model was trained that comprehensively captures the typical behavior of programs by associating them with their full historical context. Attacks are detected by comparing suspicious programs to the models’ expectations of each program’s behavior, which is informed by the programs’ provenance. This approach significantly reduces the occurrence of false alerts when compared to current endpoint security solutions, while also eliminating the need for frequent system tuning such as the adding and removing of detection rules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的更广泛影响是开发保护计算机工作站和服务器免受攻击的技术。基于历史记录的方法,将数据从原始来源追溯到当前位置(称为数据起源分析)。 保护端点计算机是企业安全的重要组成部分。当前的解决方案采用通过将端点活动与描述常见攻击行为的一组检测规则进行比较来检测攻击的策略。然而,这是一种容易出错的做法,导致大量的错误警报,同时无法检测到复杂的攻击。此外,调查这些错误警报的维护要求对缺乏必要安全资源和人员的中小型企业(SMB)构成了巨大挑战。这种障碍在存储敏感用户数据的中小企业中更加明显,安全漏洞可能会产生深远而持久的财务和社会后果。该技术可用于建立数据来源分析,作为检测对端点的攻击的更精确和实用的手段。此外,该解决方案还可以阻止可能导致客户数据泄露的攻击,从而为美国公司节省数百万美元。该I-Corps项目利用体验式学习以及对行业生态系统的第一手调查来评估该技术的翻译潜力。该解决方案基于对数据来源的分析,以确保网络安全。数据起源技术递增地解析各个端点事件(例如,进程执行和文件访问)转换成描述系统执行历史的因果依赖图。端点活动的图形化表示突出显示了对象之间的关系,从而更容易识别可疑活动。这项研究的一个关键发现是克服用于分析数据来源图的机器学习模型中固有的架构限制的方法。利用这种方法,训练了一个模型,通过将它们与完整的历史背景相关联,全面捕获程序的典型行为。通过将可疑程序与模型对每个程序行为的期望进行比较来检测攻击,该期望由程序的出处通知。与当前的端点安全解决方案相比,这种方法大大减少了错误警报的发生,同时也消除了频繁的系统调优(如添加和删除检测规则)的需要。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Bates其他文献
Entity C WasGeneratedBy Entity A Entity B Activity Used Used WasControlledByAgent
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.6
- 作者:
Adam Bates - 通讯作者:
Adam Bates
GRASP: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies
GRASP:通过安全策略的图形可达性分析强化无服务器应用程序
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Isaac Polinsky;Pubali Datta;Adam Bates;W. Enck - 通讯作者:
W. Enck
Detecting Compute Cloud Co-residency with Network Flow Watermarking Techniques
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Adam Bates - 通讯作者:
Adam Bates
Unexpected landscape-scale contemporary gene flow and fine-scale genetic diversity in rural hedgehogs
- DOI:
10.1007/s10592-025-01676-4 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:1.700
- 作者:
Hongli Yu;Lauren J. Moore;Axel Barlow;Louise K. Gentle;Deborah A. Dawson;Gavin J. Horsburgh;Lucy Knowles;Philip J. Baker;Adam Bates;Helen Hicks;Silviu Petrovan;Sarah Perkins;Richard W. Yarnell - 通讯作者:
Richard W. Yarnell
Poster: Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems
海报:有时,你不是你所做的:针对 Provenance Graph 主机入侵检测系统的模仿攻击
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Akul Goyal;Xueyuan Han;Gang Wang;Adam Bates - 通讯作者:
Adam Bates
Adam Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Bates', 18)}}的其他基金
SaTC: CORE: Medium: Principled Foundations for the Design and Evaluation of Graph-Based Host Intrusion Detection Systems
SaTC:核心:中:基于图的主机入侵检测系统的设计和评估的原则基础
- 批准号:
2055127 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Scalable Information Flow Monitoring and Enforcement through Data Provenance Unification
职业:通过数据来源统一进行可扩展的信息流监控和执行
- 批准号:
1750024 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CRII: SaTC: Transparent Capture and Aggregation of Secure Data Provenance for Smart Devices
CRII:SaTC:智能设备安全数据来源的透明捕获和聚合
- 批准号:
1657534 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
- 批准号:
2410029 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
- 批准号:
2410778 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
- 批准号:
2412186 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of a tampon-like menstrual cup and applicator system
I-Corps:卫生棉条状月经杯和涂抹器系统的翻译潜力
- 批准号:
2413962 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
- 批准号:
2414710 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
- 批准号:
2416207 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of learning engagement and assessment programs in multi-person virtual reality
I-Corps:多人虚拟现实中学习参与和评估项目的翻译潜力
- 批准号:
2417857 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a High Throughput Drug Discovery Platform for Protein Degraders
I-Corps:蛋白质降解剂高通量药物发现平台的转化潜力
- 批准号:
2419488 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
- 批准号:
2348910 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant