CAREER: Scalable Information Flow Monitoring and Enforcement through Data Provenance Unification

职业:通过数据来源统一进行可扩展的信息流监控和执行

基本信息

  • 批准号:
    1750024
  • 负责人:
  • 金额:
    $ 52.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

System intrusions have becoming more subtle and complex. Attackers now covertly observe and probe systems for prolonged periods before launching devastating attacks. In such an environment, it has grown prohibitively difficult for system administrators to identify suspicious events, correlate these events into an attack pattern, and determine an appropriate response. Data Provenance is a method of modeling a system's execution in the form of a causal relationship graph, allowing investigators to trace the ancestry of data objects and identify relationships between seemingly independent events. The goal of the proposed work is to develop techniques that enable the use of data provenance as an expressive and efficient monitoring tool in large distributed systems. These mechanisms will enable unprecedented capability to reason about system events, centrally monitor activities within data centers, and express fine-grained enforcement of security properties based on the historical flow of data. Research and software artifacts will be made available to the broader community through the Linux provenance web site.The proposed work will examine central challenges related to expressivity and scalability that currently prevent the further proliferation of provenance-based auditing techniques. To address the semantic gap that has traditionally prevented system-layer auditing from being able to explain higher-level application behaviors, this project pursues the design of universal provenance mechanisms that leverage binary analysis to transparently identify siloed application-layer logging activities, extract their semantics, and graft the information onto a causal relationship graph that encodes the entire system's execution. Grammar induction techniques will be leveraged to overcome the tremendous storage burden of provenance and provide a scalable central monitoring framework for data centers. After enriching system-layer auditing and enabling the efficient communication of suspicious activities via provenance traces, data provenance will be integrated into enforcement mechanisms to address critical security challenges including regulatory compliance, information flow control, and fault attribution. The advancement of state-of-the-art of provenance-based tracing and enforcement should establish a new baseline for reasoning about the flow of data in today's complex computing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
系统入侵变得更加微妙和复杂。现在,攻击者在发动毁灭性攻击之前,会秘密观察和探测系统很长一段时间。在这样的环境中,系统管理员识别可疑事件、将这些事件关联到攻击模式以及确定适当的响应变得异常困难。数据起源是一种以因果关系图的形式对系统执行进行建模的方法,允许调查人员跟踪数据对象的祖先,并识别看似独立的事件之间的关系。拟议工作的目标是开发能够在大型分布式系统中使用数据来源作为一种富有表现力和高效的监测工具的技术。这些机制将支持前所未有的能力来推断系统事件,集中监控数据中心内的活动,并根据历史数据流表达安全属性的细粒度实施。研究和软件产品将通过Linux出处网站向更广泛的社区提供。拟议的工作将审查与表现力和可扩展性有关的主要挑战,目前这些挑战阻碍了基于出处的审计技术的进一步扩散。为了解决传统上阻止系统层审计能够解释更高级别应用程序行为的语义鸿沟,该项目致力于通用起源机制的设计,该机制利用二进制分析来透明地识别孤立的应用层日志记录活动,提取其语义,并将信息移植到对整个系统的执行进行编码的因果关系图上。语法归纳技术将被用来克服来源的巨大存储负担,并为数据中心提供一个可扩展的中央监控框架。在丰富系统层审计并通过来源跟踪实现可疑活动的有效沟通之后,数据来源将被整合到执行机制中,以应对包括法规遵从性、信息流控制和故障归属在内的关键安全挑战。最先进的基于来源的追踪和执行的进步应该为在当今复杂的计算系统中推理数据流建立一个新的基线。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging Threats in Internet of Things Voice Services
  • DOI:
    10.1109/msec.2019.2910013
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kumar, Deepak;Paccagnella, Riccardo;Bailey, Michael
  • 通讯作者:
    Bailey, Michael
Analysis of Privacy Protections in Fitness Tracking Social Networks -or- You can run, but can you hide?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wajih Ul Hassan;Saad Hussain;Adam Bates
  • 通讯作者:
    Wajih Ul Hassan;Saad Hussain;Adam Bates
OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis
Towards Efficient Auditing for Real-Time Systems.
实现实时系统的高效审计。
UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats
  • DOI:
    10.14722/ndss.2020.24046
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xueyuan Han;Thomas Pasquier;Adam Bates;James W. Mickens;M. Seltzer
  • 通讯作者:
    Xueyuan Han;Thomas Pasquier;Adam Bates;James W. Mickens;M. Seltzer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Bates其他文献

Entity C WasGeneratedBy Entity A Entity B Activity Used Used WasControlledByAgent
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Adam Bates
  • 通讯作者:
    Adam Bates
GRASP: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies
GRASP:通过安全策略的图形可达性分析强化无服务器应用程序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isaac Polinsky;Pubali Datta;Adam Bates;W. Enck
  • 通讯作者:
    W. Enck
Detecting Compute Cloud Co-residency with Network Flow Watermarking Techniques
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Bates
  • 通讯作者:
    Adam Bates
Unexpected landscape-scale contemporary gene flow and fine-scale genetic diversity in rural hedgehogs
  • DOI:
    10.1007/s10592-025-01676-4
  • 发表时间:
    2025-02-25
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Hongli Yu;Lauren J. Moore;Axel Barlow;Louise K. Gentle;Deborah A. Dawson;Gavin J. Horsburgh;Lucy Knowles;Philip J. Baker;Adam Bates;Helen Hicks;Silviu Petrovan;Sarah Perkins;Richard W. Yarnell
  • 通讯作者:
    Richard W. Yarnell
Poster: Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems
海报:有时,你不是你所做的:针对 Provenance Graph 主机入侵检测系统的模仿攻击
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akul Goyal;Xueyuan Han;Gang Wang;Adam Bates
  • 通讯作者:
    Adam Bates

Adam Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Bates', 18)}}的其他基金

I-Corps: Translation potential of using provenance-based threat detection for improving cybersecurity
I-Corps:使用基于来源的威胁检测来提高网络安全的转化潜力
  • 批准号:
    2424261
  • 财政年份:
    2024
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Principled Foundations for the Design and Evaluation of Graph-Based Host Intrusion Detection Systems
SaTC:核心:中:基于图的主机入侵检测系统的设计和评估的原则基础
  • 批准号:
    2055127
  • 财政年份:
    2021
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
CRII: SaTC: Transparent Capture and Aggregation of Secure Data Provenance for Smart Devices
CRII:SaTC:智能设备安全数据来源的透明捕获和聚合
  • 批准号:
    1657534
  • 财政年份:
    2017
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
FuSe-TG: STAMPEDE: Scalable Technology And Manufacturing of Photonics for Extreme information-Density
FuSe-TG:STAMPEDE:可扩展的光子学技术和制造,以实现极端信息密度
  • 批准号:
    2235443
  • 财政年份:
    2023
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
  • 批准号:
    2240227
  • 财政年份:
    2023
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
Robust and scalable algorithms for learning hidden structures in sparse network data with the aid of side information
借助辅助信息学习稀疏网络数据中隐藏结构的鲁棒且可扩展的算法
  • 批准号:
    2311024
  • 财政年份:
    2023
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Standard Grant
UpScale: Scalable quantum information enabled by integrated optics
UpScale:通过集成光学实现可扩展的量子信息
  • 批准号:
    10006239
  • 财政年份:
    2022
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Collaborative R&D
Towards scalable quantum information processing and quantum networks
迈向可扩展的量子信息处理和量子网络
  • 批准号:
    RGPIN-2019-05999
  • 财政年份:
    2022
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Discovery Grants Program - Individual
Dopant-Based Scalable Platform in Silicon for Quantum Information Processing
用于量子信息处理的基于掺杂剂的可扩展硅平台
  • 批准号:
    RGPIN-2020-05738
  • 财政年份:
    2022
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106993
  • 财政年份:
    2021
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2107363
  • 财政年份:
    2021
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106427
  • 财政年份:
    2021
  • 资助金额:
    $ 52.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了