CAREER: New Approaches for Ranking in Machine Learning
职业:机器学习排名的新方法
基本信息
- 批准号:1658794
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In numerous industries, decisions are based on large amounts of data, where a ranked list of possible actions determines how limited resources will be spent. Over the last decade, machine learning algorithms for ranking have been designed to address prioritization problems. These algorithms rank a set of objects according to the probability to possess a certain attribute; for example, we might rank a set of manholes in order of their probability to catch fire next year. However, current algorithms solve ranking problems approximately rather than exactly, and these approximate algorithms can be slow; furthermore they do not take into account many application-specific problems.The goals of this project include: I) Finding exact solutions to ranking problems by developing a toolbox of algorithmic techniques based on mixed-integer optimization technology. II) Finding solutions faster by showing a fundamental equivalence of ranking problems to easier classification problems that can be solved an order of magnitude faster. III) Developing frameworks for new structured problems. The first framework pertains to ranking problems that have a graph structure that are relevant to the energy domain. The second framework handles a sequential prediction problem arising from recommender systems, with applications also in the medical domain.Through collaboration with industry, the proposed methods are being applied in several different areas, including the prevention of serious events (fires and explosions) on NYC's electrical grid.
在许多行业中,决策是基于大量数据的,其中可能采取的行动的排名列表决定了如何使用有限的资源。在过去的十年中,用于排名的机器学习算法被设计用于解决优先级问题。这些算法根据拥有某个属性的概率对一组对象进行排名;例如,我们可以根据明年着火的概率对一组沙井进行排名。然而,目前的算法解决排名问题的近似而不是准确的,这些近似算法可能会很慢,而且他们没有考虑到许多特定的应用problems.The本项目的目标包括:I)通过开发一个工具箱的算法技术的基础上混合整数优化技术的排名问题的精确解决方案。II)通过显示排序问题与更容易的分类问题的基本等价性来更快地找到解决方案,这些问题可以更快地解决一个数量级。三、为新的结构化问题建立框架。第一个框架涉及具有与能量域相关的图结构的排名问题。第二个框架处理推荐系统产生的顺序预测问题,也在医疗领域的应用。通过与行业的合作,所提出的方法正在应用于几个不同的领域,包括预防纽约市电网上的严重事件(火灾和爆炸)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Rudin其他文献
Fast and Interpretable Mortality Risk Scores for Critical Care Patients
重症监护患者快速且可解释的死亡风险评分
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chloe Qinyu Zhu;Muhang Tian;Lesia Semenova;Jiachang Liu;Jack Xu;Joseph Scarpa;Cynthia Rudin - 通讯作者:
Cynthia Rudin
Exploring the Whole Rashomon Set of Sparse Decision Trees
探索整个罗生门稀疏决策树集
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rui Xin;Chudi Zhong;Zhi Chen;Takuya Takagi;Margo Seltzer;Cynthia Rudin - 通讯作者:
Cynthia Rudin
Graph-based design of irregular metamaterials
基于图的不规则超材料设计
- DOI:
10.1016/j.ijmecsci.2025.110203 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:9.400
- 作者:
Rayehe Karimi Mahabadi;Zhi Chen;Alexander C. Ogren;Han Zhang;Chiara Daraio;Cynthia Rudin;L. Catherine Brinson - 通讯作者:
L. Catherine Brinson
Understanding and Exploring the Whole Set of Good Sparse Generalized Additive Models
理解和探索一整套良好的稀疏广义可加模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhi Chen;Chudi Zhong;Margo I. Seltzer;Cynthia Rudin - 通讯作者:
Cynthia Rudin
Machine learning for science and society
- DOI:
10.1007/s10994-013-5425-9 - 发表时间:
2013-11-28 - 期刊:
- 影响因子:2.900
- 作者:
Cynthia Rudin;Kiri L. Wagstaff - 通讯作者:
Kiri L. Wagstaff
Cynthia Rudin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Rudin', 18)}}的其他基金
FAI: An Interpretable AI Framework for Care of Critically Ill Patients Involving Matching and Decision Trees
FAI:用于危重患者护理的可解释人工智能框架,涉及匹配和决策树
- 批准号:
2147061 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
FW-HTF-R: Interpretable Machine Learning for Human-Machine Collaboration in High Stakes Decisions in Mammography
FW-HTF-R:用于乳腺 X 线摄影高风险决策中人机协作的可解释机器学习
- 批准号:
2222336 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
EAGER: Creating an Unsupervised Interpretable Representation of the World Through Concept Disentanglement
EAGER:通过概念解开创建一个无监督的、可解释的世界表征
- 批准号:
2130250 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
NSF Workshop on Seamless/Seamful Human-Technology Interaction
NSF 无缝/无缝人类技术交互研讨会
- 批准号:
2131355 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER: New Approaches for Ranking in Machine Learning
职业:机器学习排名的新方法
- 批准号:
1053407 - 财政年份:2011
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Postdoctoral Research Fellowship in Biological Informatics for FY 2005
2005财年生物信息学博士后研究奖学金
- 批准号:
0434636 - 财政年份:2005
- 资助金额:
$ 48万 - 项目类别:
Fellowship Award
相似海外基金
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: Hybrid Approaches to Quantum Cryptography: New Methods and Protocols
职业:量子密码学的混合方法:新方法和协议
- 批准号:
2143644 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
- 批准号:
2146091 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER: New Approaches to Managing Lifecycles of Digital Knowledge Commons
职业:管理数字知识共享生命周期的新方法
- 批准号:
2045055 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER: A New Science of Skeletal and Physiological Systems: using integrated approaches to elucidate mineralized tissue properties and behavior
职业:骨骼和生理系统的新科学:使用综合方法来阐明矿化组织的特性和行为
- 批准号:
2044870 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: New Synthetic Approaches to Engineering Topology: from Quantum Many-Body Rydberg Atom Arrays to Classical Mechanical Networks
职业:工程拓扑的新综合方法:从量子多体里德伯原子阵列到经典机械网络
- 批准号:
1945031 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: New control-theoretic approaches for cyber-physical privacy
职业:网络物理隐私的新控制理论方法
- 批准号:
1846706 - 财政年份:2019
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
- 批准号:
1936640 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning
职业:超越最坏情况分析:近似算法和机器学习的新方法
- 批准号:
1652491 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant