Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
基本信息
- 批准号:1658920
- 负责人:
- 金额:$ 21.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A vast empirical literature has demonstrated that firms, workers, schools, or banks differ from each other, and that accounting for agent heterogeneity in economic models is often key for accurate quantitative predictions. This project develops new techniques to capture relevant sources of heterogeneity which are not directly observed in the data, but can be inferred using repeated observations of individual choices or other outcomes. Flexibly modeling unobserved differences between agents with individual-specific parameters raises important challenges in terms of computation and statistical inference. The approach developed in this project is based on dimension reduction methods whereby heterogeneous agents are grouped into a small number of types. Discrete methods provide a way to reduce the dimensionality of heterogeneity. This may be advantageous for both computational and statistical reasons. However, existing methods such as finite mixtures face computational challenges, and they are mostly studied under the strong assumption that heterogeneity is discrete in the population. The investigators broaden the scope of discrete methods, by developing computationally tractable two-step estimators and studying their properties in the absence of such substantive assumptions. This research also illustrates the usefulness of these methods in applications, particularly in structural models where allowing for unobserved heterogeneity raises important challenges, and in models with two-sided heterogeneity.
大量的实证文献表明,企业、工人、学校或银行彼此不同,在经济模型中考虑代理人的异质性往往是准确定量预测的关键。该项目开发了新的技术来捕捉异质性的相关来源,这些来源不能直接在数据中观察到,但可以通过重复观察个人选择或其他结果来推断。灵活建模具有个体特定参数的智能体之间未观察到的差异在计算和统计推断方面提出了重要挑战。本项目开发的方法基于降维方法,将异质代理分组为少量类型。离散方法提供了一种降低异构维数的方法。这在计算和统计上都是有利的。然而,现有的方法,如有限混合,面临着计算上的挑战,它们大多是在强假设异质性在群体中是离散的情况下进行研究的。研究者拓宽了离散方法的范围,通过发展计算上易于处理的两步估计,并在没有这些实质性假设的情况下研究它们的性质。这项研究还说明了这些方法在应用中的实用性,特别是在结构模型中,允许未观察到的异质性提出了重要的挑战,以及在具有双边异质性的模型中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephane Bonhomme其他文献
The Past, Present, and Future of Economics: A Celebration of the 125-Year Anniversary of the JPE and of Chicago Economics
经济学的过去、现在和未来:庆祝 JPE 和芝加哥经济学会成立 125 周年
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ufuk Akcigit;Fernando Alvarez;Stephane Bonhomme;G. Constantinides;Douglas W. Diamond;E. Fama;David W. Galenson;Michael Greenstone;L. Hansen;Uhlig Harald;James J. Heckman;Ali Hortaçsu;Emir Kamenica;Greg Kaplan;Anil Kashyap;S. Levitt;John A. List;Robert E. Lucas;M. Mogstad;R. Myerson;Derek Neal;Canice Prendergast;R. Rajan;P. Reny;A. Shaikh;R. Shimer;Hugo Sonnenschein;Nancy L. Stokey;Richard H. Thaler;R. Topel;Robert W. Vishny;Luigi Zingales - 通讯作者:
Luigi Zingales
Estimating Individual Responses When Tomorrow Matters
当明天很重要时评估个人反应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stephane Bonhomme;Angela Denis - 通讯作者:
Angela Denis
Estimating heterogeneous effects: applications to labor economics
估计异质效应:在劳动经济学中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stephane Bonhomme;Angela Denis - 通讯作者:
Angela Denis
Stephane Bonhomme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 21.07万 - 项目类别:
Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306439 - 财政年份:2023
- 资助金额:
$ 21.07万 - 项目类别:
Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 21.07万 - 项目类别:
Continuing Grant
Collaborative Research: Adding a Magnetic Dimension to M-dwarf Stars Observed by APOGEE
合作研究:为 APOGEE 观测到的 M 矮星添加磁维度
- 批准号:
2009172 - 财政年份:2020
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2015447 - 财政年份:2020
- 资助金额:
$ 21.07万 - 项目类别:
Continuing Grant
Collaborative Research: Adding a Magnetic Dimension to M-dwarf Stars Observed by APOGEE
合作研究:为 APOGEE 观测到的 M 矮星添加磁维度
- 批准号:
2009507 - 财政年份:2020
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2014279 - 财政年份:2020
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923145 - 财政年份:2019
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923247 - 财政年份:2019
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant
Collaborative Research: Dimension Reduction Methods for Estimating Economic Models with Panel Data
合作研究:用面板数据估计经济模型的降维方法
- 批准号:
1817476 - 财政年份:2017
- 资助金额:
$ 21.07万 - 项目类别:
Standard Grant