ABI Innovation: Empirical Dynamics: A Next-Generation Approach For Uncovering Hidden Causal Links in Gene Expression

ABI 创新:经验动力学:揭示基因表达中隐藏因果关系的下一代方法

基本信息

项目摘要

The full human genome of 3.3 billion base pairs was first sequenced nearly 15 years ago. Nonetheless, genetic science is still a long way off from understanding how this exhaustive list of "parts" fits together. This project heralds a transformative shift in the basic mathematical approach to understanding how genes interact, by exploiting the fact that gene expression is a temporal and context dependent process. For example, every person has the genetic coding to produce melatonin; however, its expression varies through the day (keying on genes in the circadian clock) and it is sensitive to environmental factors like light exposure. Thus the temporal sequence and context of expression are important. However, current approaches to understanding variability in expression have relied on non-temporal statistical frameworks based on correlation. They assume that if genes interact, they will always either be positively correlated (simultaneously expressed among all samples) or negatively correlated (expressed only when the other is not) regardless of context or the changing cellular environment. Though a convenient simplification, such correlative approaches are obviously incomplete, and are likely to overlook essential processes such as thresholding, regime shifts, and gene check-pointing that specifically arise from dynamic, context-dependent behavior. This project will investigate empirical dynamic modeling (EDM) as an emerging framework that explicitly accounts for both the context and temporal sequence of expression events. The work will be a mixture of proof-of-principle and application to a cell differentiation pathway in mice associated with breast cancers. Development of EDM will provide an important complement to current approaches, with the capability to dramatically increase the efficacy of bioinformatics and systems biology research, and to reveal important regulatory hubs of genes that are non-correlated and thus invisible to current approaches.This project will investigate and further develop empirical dynamic modeling (EDM) as a conceptual framework to identify causal interactions among genes and produce mechanistic understanding that can be validated by prediction. As an approach that accommodates the reality of natural (non-engineered) nonlinear (context-dependent) interconnected systems, EDM is well-suited to leverage temporally-explicit genomic datasets that have only recently become feasible. In the first phase, the approach will be applied to construct gene interaction networks during the yeast (S. cerevisiae) cell cycle to explore how an explicitly nonlinear and dynamic approach can reveal information that is hidden to current analytical methods. Building on this, the second phase will seek to develop and implement an EDM approach (static cross-map) to single cell data that necessarily lack an explicit time sequence. The approach will be developed and tested on computational models of gene circuits, then applied to single cell data obtained from a stem-cell differentiation sequence in mice. Work will be validated by comparison to existing ontologies and by tailored experiments to be carried out by a collaborating lab at The Salk Institute. Software will be distributed through BioConductor: https://www.bioconductor.org/, all other materials (video animations, interactive demos, etc.) will be hosted on the Sugihara Lab website: http://deepeco.ucsd.edu.
大约15年前,33亿碱基对的完整人类基因组首次测序。尽管如此,遗传科学距离理解这一详尽的“部分”清单如何组合在一起还有很长的路要走。这个项目预示着一个变革性的转变,在基本的数学方法来理解基因如何相互作用,通过利用基因表达是一个时间和上下文依赖的过程。 例如,每个人都有产生褪黑激素的遗传编码;然而,它的表达在一天中会有所不同(在生物钟中键入基因),并且它对环境因素(如光照)敏感。因此,表达的时间顺序和背景是重要的。然而,目前的方法来理解表达的变化依赖于基于相关性的非时间统计框架。他们假设,如果基因相互作用,它们将总是正相关(在所有样本中同时表达)或负相关(仅在另一个不表达时表达),而不管背景或细胞环境的变化。虽然是一个方便的简化,这种相关的方法显然是不完整的,并且可能会忽略基本的过程,如阈值,政权转移,基因检查点,特别是从动态的,上下文相关的行为。这个项目将调查经验动态建模(EDM)作为一个新兴的框架,明确占表达事件的上下文和时间序列。这项工作将是原理证明和应用于与乳腺癌相关的小鼠细胞分化途径的混合物。EDM的发展将为当前的方法提供重要的补充,能够显著提高生物信息学和系统生物学研究的效率,并揭示基因的重要调控中心,这些基因是不相关的,因此在目前的方法中是不可见的。本项目将研究并进一步发展经验动态建模(EDM)作为一个概念框架,以确定基因之间的因果相互作用,并产生可以通过预测验证的机械理解。作为一种适应自然(非工程)非线性(上下文相关)互连系统现实的方法,EDM非常适合利用最近才变得可行的时间明确的基因组数据集。在第一阶段中,我们将应用该方法构建酵母(S。酿酒酵母)细胞周期,探索如何明确的非线性和动态的方法可以揭示隐藏在当前的分析方法的信息。在此基础上,第二阶段将寻求开发和实施EDM方法(静态交叉图),以处理必然缺乏明确时间序列的单细胞数据。该方法将在基因电路的计算模型上进行开发和测试,然后应用于从小鼠干细胞分化序列中获得的单细胞数据。工作将通过与现有本体的比较以及由索尔克研究所的合作实验室进行的定制实验进行验证。软件将通过BioConductor分发:https://www.bioconductor.org/,所有其他材料(视频动画、交互式演示等)将托管在Sugihara Lab网站上:http://deepeco.ucsd.edu。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Visual Analytics Approach for Ecosystem Dynamics based on Empirical Dynamic Modeling
基于经验动态建模的生态系统动力学可视化分析方法
Recent developments in empirical dynamic modelling
经验动态模型的最新进展
  • DOI:
    10.1111/2041-210x.13983
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Munch, Stephan B.;Rogers, Tanya L.;Sugihara, George
  • 通讯作者:
    Sugihara, George
Frequently asked questions about nonlinear dynamics and empirical dynamic modelling
  • DOI:
    10.1093/icesjms/fsz209
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Munch, Stephan B.;Brias, Antoine;Rogers, Tanya L.
  • 通讯作者:
    Rogers, Tanya L.
Beyond linearity, stability, and equilibrium: The edm package for empirical dynamic modeling and convergent cross-mapping in Stata
  • DOI:
    10.1177/1536867x211000030
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Li, Jinjing;Zyphur, Michael J.;Laub, Patrick J.
  • 通讯作者:
    Laub, Patrick J.
Comprehensive incentives for reducing Chinook salmon bycatch in the Bering Sea walleye Pollock fishery: Individual tradable encounter credits
减少白令海白眼狭鳕渔业中奇努克鲑鱼兼捕的综合激励措施:个人可交易遭遇积分
  • DOI:
    10.1016/j.rsma.2018.06.002
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Sugihara, George;Criddle, Keith R.;McQuown, Mac;Giron-Nava, Alfredo;Deyle, Ethan;James, Chase;Lee, Adrienne;Pao, Gerald;Saberski, Erik;Ye, Hao
  • 通讯作者:
    Ye, Hao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Sugihara其他文献

Cooperative network dynamics
合作网络动态
  • DOI:
    10.1038/458979a
  • 发表时间:
    2009-04-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    George Sugihara;Hao Ye
  • 通讯作者:
    Hao Ye
Early-warning signals for critical transitions
关键转变的预警信号
  • DOI:
    10.1038/nature08227
  • 发表时间:
    2009-09-03
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Marten Scheffer;Jordi Bascompte;William A. Brock;Victor Brovkin;Stephen R. Carpenter;Vasilis Dakos;Hermann Held;Egbert H. van Nes;Max Rietkerk;George Sugihara
  • 通讯作者:
    George Sugihara
ミトコンドリア形質転換のためのミトコンドリア宅配型アグロバクテリウム開発へのアプローチ
开发用于线粒体转化的线粒体递送农杆菌的方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Ushio;Chih-Hao Hsieh;Reiji Masuda;Ethan Deyle;Hao Ye;Chun-Wei Chang;George Sugihara;Michio Kondoh;Michio Kondoh;Toriyama K;Kazama T;梅津優香・伊藤幸博・鳥山欽哉
  • 通讯作者:
    梅津優香・伊藤幸博・鳥山欽哉
Interspecific interactions, diversity and the stability of a natural fish community
自然鱼类群落的种间相互作用、多样性和稳定性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Ushio;Chih-Hao Hsieh;Reiji Masuda;Ethan Deyle;Hao Ye;Chun-Wei Chang;George Sugihara;Michio Kondoh
  • 通讯作者:
    Michio Kondoh
Effects of taxonomic and trophic aggregation on food web properties
  • DOI:
    10.1007/s004420050310
  • 发表时间:
    1997-10-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    George Sugihara;L.-F. Bersier;Kenneth Schoenly
  • 通讯作者:
    Kenneth Schoenly

George Sugihara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Sugihara', 18)}}的其他基金

Food webs as proxies for ecological interaction networks
食物网作为生态相互作用网络的代理
  • 批准号:
    1655203
  • 财政年份:
    2017
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Standard Grant
Understanding The Inter-Annual Variability of Fraser River Salmon Populations with Dynamic State Space Reconstruction: A New Predictive Approach for Ecological Dynamics
通过动态状态空间重建了解弗雷泽河鲑鱼种群的年际变化:一种新的生态动力学预测方法
  • 批准号:
    1020372
  • 财政年份:
    2010
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Standard Grant
A Critical Re-Examination of Food Web Patterns in Real Ecosystems
对真实生态系统中食物网模式的批判性重新审视
  • 批准号:
    8908326
  • 财政年份:
    1989
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Standard Grant
A Critical Reexamination of Food Web Patterns in Real Ecosystems
对真实生态系统中食物网模式的批判性重新审视
  • 批准号:
    8807404
  • 财政年份:
    1988
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Standard Grant

相似海外基金

The impact of financial crises on technological innovation: Empirical analyses based on patent data
金融危机对技术创新的影响:基于专利数据的实证分析
  • 批准号:
    23K01474
  • 财政年份:
    2023
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical study on clarifying the present state of collaboration between a company and a university, in order to examine problems and solutions of activating local innovation.
通过实证研究阐明企业与大学之间的合作现状,以探讨激活当地创新的问题和解决方案。
  • 批准号:
    21K01878
  • 财政年份:
    2021
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Empirical Research on Theories and Practices Concerning to the STEM Education Innovation for the Society 5.0
STEM教育创新社会5.0理论与实践实证研究
  • 批准号:
    20H01743
  • 财政年份:
    2020
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Empirical analyses of vertical spillover and induced innovation of product safety regulations through international production networksaaaa
国际生产网络纵向溢出及产品安全监管诱导创新的实证分析aaaa
  • 批准号:
    20H01496
  • 财政年份:
    2020
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Empirical Analysis on R&D Subsidies and Innovation with Spillovers
R的实证分析
  • 批准号:
    20K13480
  • 财政年份:
    2020
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Empirical research on the relationship between family business innovation activities and regional revitalization
家族企业创新活动与区域振兴关系实证研究
  • 批准号:
    20H01533
  • 财政年份:
    2020
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical and empirical research on industry structure change by disruptive innovation
颠覆性创新产业结构变革的理论与实证研究
  • 批准号:
    20K01858
  • 财政年份:
    2020
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modern state-owned firms' performance - An empirical analysis of productivity, market power and innovation
现代国有企业的绩效——生产力、市场力量和创新的实证分析
  • 批准号:
    411547861
  • 财政年份:
    2019
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Research Grants
Empirical Studies on Mergers and Acquisitions and Firm Innovation
并购与企业创新的实证研究
  • 批准号:
    19K01736
  • 财政年份:
    2019
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Participation in GVC, Innovation and Productivity: An Empirical Analysis of Firm-Level Data
参与全球价值链、创新和生产力:企业层面数据的实证分析
  • 批准号:
    2212346
  • 财政年份:
    2019
  • 资助金额:
    $ 65.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了