ABI Development: Increasing concurrency for improved performance of the BEAGLE library
ABI 开发:增加并发性以提高 BEAGLE 库的性能
基本信息
- 批准号:1661443
- 负责人:
- 金额:$ 101.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Estimating the evolutionary history of organisms, phylogenetic inference, is often a critical step for understanding how organisms adapt in complex biological systems. Modern phylogenetic analyses involve obtaining DNA sequence data from a set of organisms, and using model-based methods to infer a binary tree that reflects how closely the organisms are related to one another. This tree represents the evolutionary history of the organisms going back to their most recent common ancestor and is, in essence, a subset of the overall tree of life. In addition to providing a basic understanding of the evolution of life, these phylogenetic relationships are very important in understanding the evolutionary dynamics, timing, and spread of many disease-causing organisms, such as viruses (e.g., hiv, flu, and Ebola). The most effective phylogenetic inferences involve statistical methods, either maximum likelihood or Bayesian analysis. Both of these methods share the same computational bottleneck, which is the calculation of the likelihood of proposed trees. These likelihood calculations are extremely computationally intensive, and hence accurate phylogenetic analyses become a bottleneck in many studies of the tree of life. Therefore, accelerating phylogenetic analyses is critical to produce timely results that can inform public health and disease containment actions, as well as to understand fundamental problems in evolutionary biology more broadly. This project increases the performance and capabilities of software that will in crease the speed of analyses, and thus decrease the time to scientific results.The Broad-platform Evolutionary Analysis General Likelihood Evaluator (BEAGLE) library and Application Programming Interface (API) is a high-performance likelihood-calculation platform for evolutionary models. It defines a uniform API and includes a collection of efficient implementations for calculating a variety of likelihood-based models on different hardware devices, such as graphics processing units (GPUs) and multicore cpus. The project provides new thinking to the problem of computing the likelihood function in evolutionary analyses through configuring concurrent communication by moving computation that previously required multiple BEAGLE instances into a single instance. Operating under a single beagle instance allows better coordination of concurrent communication, by, for example, reducing memory transfers as well as by load-balancing the computation across potentially heterogeneous devices. The emphasis on concurrency originates from a deep understanding of the specific characteristics of the computational problem - computing the likelihood function - and how it is used for analyses within the domain sciences - phylogenetics and population genetics, and recognizing the opportunities presented by trends in processor design for increasing concurrency. The overarching theme comprises the following recurring sub-themes: i) reformulation - identifying and decomposing computation into practical independent operations; ii) minimization - reducing operations, such as memory transfers and execution overhead; and iii) control - configuring flow and communication to maximize concurrency, including across devices. The research project reformulates the library and its api, and focuses on consolidating more capabilities into a single library instance through the following research initiatives: 1. exploiting additional concurrency within a library instance, thus improving concurrent communication by reformulation and minimization; 2. developing the library to fully leverage multi-device systems, thus improving concurrent communication by controlling load-balancing; 3. exploring numerical precision and scaling in parallel computing context; and 4. extending the capabilities of the library with new models for statistical phylogenetics and population genetics.
估计生物体的进化史,系统发育推断,往往是了解生物体如何适应复杂生物系统的关键步骤。现代系统发育分析包括从一组生物体中获取DNA序列数据,并使用基于模型的方法来推断二叉树,该二叉树反映了生物体彼此之间的密切关系。这棵树代表了生物的进化史,可以追溯到它们最近的共同祖先,从本质上讲,它是整个生命树的一个子集。除了提供对生命进化的基本理解之外,这些系统发育关系对于理解许多致病生物体(如病毒(如艾滋病毒、流感和埃博拉病毒))的进化动力学、时间和传播非常重要。最有效的系统发育推断涉及统计方法,要么是最大似然分析,要么是贝叶斯分析。这两种方法都有相同的计算瓶颈,即计算提议树的可能性。这些可能性计算是非常密集的计算,因此准确的系统发育分析成为许多生命之树研究的瓶颈。因此,加快系统发育分析对于产生及时的结果至关重要,这些结果可以为公共卫生和疾病控制行动提供信息,也可以更广泛地理解进化生物学中的基本问题。这个项目提高了软件的性能和能力,从而提高了分析的速度,从而减少了获得科学结果的时间。BEAGLE(泛平台进化分析通用似然评估器)库和应用程序编程接口(API)是一个高性能的进化模型似然计算平台。它定义了一个统一的API,并包括一组有效的实现,用于在不同的硬件设备(如图形处理单元(gpu)和多核cpu)上计算各种基于似然的模型。该项目通过将以前需要多个BEAGLE实例的计算转移到单个实例中,从而配置并发通信,为进化分析中计算似然函数的问题提供了新的思路。在单个beagle实例下操作可以更好地协调并发通信,例如,通过减少内存传输以及跨潜在异构设备的负载平衡计算。对并发性的强调源于对计算问题(计算似然函数)的具体特征的深刻理解,以及如何将其用于领域科学(系统遗传学和种群遗传学)中的分析,并认识到处理器设计趋势为增加并发性所提供的机会。总体主题包括以下反复出现的子主题:i)重新表述-将计算识别并分解为实际的独立操作;最小化——减少操作,如内存传输和执行开销;iii)控制-配置流程和通信以最大限度地提高并发性,包括跨设备。该研究项目重新制定了库及其api,并通过以下研究计划将更多功能整合到单个库实例中:利用库实例中的额外并发性,从而通过重构和最小化来改进并发通信;2. 开发充分利用多设备系统的库,从而通过控制负载平衡来改善并发通信;3. 探讨并行计算环境下的数值精度和尺度和4。用统计系统遗传学和群体遗传学的新模型扩展文库的能力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rerooting Trees Increases Opportunities for Concurrent Computation and Results in Markedly Improved Performance for Phylogenetic Inference
树重新生根增加了并发计算的机会,并显着提高了系统发育推断的性能
- DOI:10.1109/ipdpsw.2018.00049
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ayres, Daniel L;Cummings, Michael P
- 通讯作者:Cummings, Michael P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Cummings其他文献
MACHINE LEARNING CLASSIFICATION OF THE EPIDEMIOLOGIC STAGES OF INFLAMMATORY BOWEL DISEASE ACROSS GEOGRAPHY AND TIME
- DOI:
10.1053/j.gastro.2023.11.123 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Lindsay Hracs;Joseph Windsor;Julia Gorospe;Michael Buie;Joshua Quan;Lea Caplan;Ante Markovinovic;Michael Cummings;Quinn Goddard;Tyler Williamson;Yvonne Abbey;Maria Abreu;Raja Ali;Murdani Abdullah;Mansour Altuwaijri;Vineet Ahuja;Domingo Balderramo;Rupa Banerjee;Eric Benchimol;Charles Bernstein - 通讯作者:
Charles Bernstein
Mo1495 INFLAMMATORY DIET AND NON-ALCOHOLIC FATTY LIVER DISEASE: A NATIONAL HEALTH AND EXAMINATION SURVEY STUDY.
- DOI:
10.1016/s0016-5085(20)34231-1 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Amandeep Singh;Mohamed Tausif Siddiqui;Michael Cummings;Rocio Lopez;Anne Tang;Donald F. Kirby;Arthur McCullough - 通讯作者:
Arthur McCullough
Retraction speed and chronic poststernotomy pain: A randomized controlled trial
回缩速度与胸骨切开术后慢性疼痛:一项随机对照试验
- DOI:
10.1016/j.jtcvs.2023.11.037 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:4.400
- 作者:
Rachel Phelan;Dimitri Petsikas;Jessica Shelley;Wilma M. Hopman;Deborah DuMerton;Monica Parry;Darrin Payne;Rene Allard;Michael Cummings;Joel L. Parlow;Robert Tanzola;Louie T.S. Wang;Craig Stewart;Tarit K. Saha - 通讯作者:
Tarit K. Saha
A survey of focused cardiac ultrasonography training in Canadian anesthesiology residency programs
- DOI:
10.1007/s12630-016-0800-1 - 发表时间:
2017-02-08 - 期刊:
- 影响因子:3.300
- 作者:
Glenio Mizubuti;Rene Allard;Anthony M.-H. Ho;Michael Cummings;Robert C. Tanzola - 通讯作者:
Robert C. Tanzola
Schulterschmerzen: Diagnostik- und Behandlungsansätze mit Fokus auf Tendinopathien der Rotatorenmanschette
- DOI:
10.1055/a-1350-2192 - 发表时间:
2021-05 - 期刊:
- 影响因子:0
- 作者:
Michael Cummings - 通讯作者:
Michael Cummings
Michael Cummings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Cummings', 18)}}的其他基金
RAPID: Accelerating Phylodynamic Analyses of SARS-CoV-2
RAPID:加速 SARS-CoV-2 的系统动力学分析
- 批准号:
2032700 - 财政年份:2020
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
ABI: Development: Parallel Computing for Phylogenetics: Grid, Public and GPU Computing
ABI:开发:系统发育的并行计算:网格、公共和 GPU 计算
- 批准号:
1356562 - 财政年份:2014
- 资助金额:
$ 101.03万 - 项目类别:
Continuing Grant
Grid, Public and GPU Computing for the Tree of Life
生命之树的网格、公共和 GPU 计算
- 批准号:
0755048 - 财政年份:2008
- 资助金额:
$ 101.03万 - 项目类别:
Continuing Grant
Workshop on Molecular Evolution, Woods Hole-MBL
分子进化研讨会,伍兹霍尔-MBL
- 批准号:
0235883 - 财政年份:2003
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of Cold TubulinSequences and Their Implication for Cold-Adaptation of Microtubules
合作研究:冷微管蛋白序列分析及其对微管冷适应的意义
- 批准号:
0353570 - 财政年份:2003
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of Cold TubulinSequences and Their Implication for Cold-Adaptation of Microtubules
合作研究:冷微管蛋白序列分析及其对微管冷适应的意义
- 批准号:
0324378 - 财政年份:2003
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Workshops in Molecular Evolution, Woods Hole, MA, 2000-2002
分子进化研讨会,伍兹霍尔,马萨诸塞州,2000-2002
- 批准号:
9980563 - 财政年份:2000
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Acquisition of a Powder X-Ray Diffractometer for the Applied Mineralogy Laboratory at Portland State University
为波特兰州立大学应用矿物学实验室购置粉末 X 射线衍射仪
- 批准号:
9807085 - 财政年份:1998
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Evolution of a Miocene Rift System in Eastern Oregon: A REU Site
俄勒冈州东部中新世裂谷系统的演化:REU 遗址
- 批准号:
9322410 - 财政年份:1994
- 资助金额:
$ 101.03万 - 项目类别:
Continuing Grant
Volcanic Processes in the Pacific Northwest
西北太平洋地区的火山过程
- 批准号:
9353935 - 财政年份:1994
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Research And Development into Reliable and Sustainable Remote and Seawater Purification Technology to Increasing Drinking Water Access Worldwide
研究和开发可靠且可持续的远程海水净化技术,以增加全球饮用水供应
- 批准号:
10087593 - 财政年份:2024
- 资助金额:
$ 101.03万 - 项目类别:
Collaborative R&D
FY23 NSF CISE Proposal Development Workshop: Increasing Participation and Competitiveness of Minority-serving Institutions
23 财年 NSF CISE 提案制定研讨会:提高少数族裔服务机构的参与度和竞争力
- 批准号:
2300410 - 财政年份:2023
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Identification of bacterial strains for development of an oral probiotic aimed at increasing nitric oxide bioavailability
鉴定用于开发口服益生菌的菌株,旨在提高一氧化氮的生物利用度
- 批准号:
10666185 - 财政年份:2023
- 资助金额:
$ 101.03万 - 项目类别:
Simulated Environment Mobile Unit Development: Increasing Access to High-End Insights Research for SMEs
模拟环境移动单元开发:增加中小企业获得高端洞察研究的机会
- 批准号:
10053345 - 财政年份:2023
- 资助金额:
$ 101.03万 - 项目类别:
Grant for R&D
Increasing Retention and Success of Computing Students through Curriculum Development, Community Support, and Service Learning
通过课程开发、社区支持和服务学习提高计算机专业学生的保留率和成功率
- 批准号:
2221472 - 财政年份:2022
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Generating actionable science to inform sustainable freshwater ecosystem use and shoreline development in Canada in the face of increasing human pressure
面对日益增加的人类压力,生成可行的科学知识,为加拿大的可持续淡水生态系统利用和海岸线开发提供信息
- 批准号:
570434-2021 - 财政年份:2022
- 资助金额:
$ 101.03万 - 项目类别:
Alliance Grants
Increasing Access to Graduate Degrees, Professional Development, and Research Experiences: Pathways to Achievement in Chemical Industries
增加获得研究生学位、专业发展和研究经验的机会:化学工业取得成就的途径
- 批准号:
2030879 - 财政年份:2021
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant
Development of seed conditioning to improve germination with the aim of increasing production of Bupleurum falcatum.
开发种子调理剂以改善发芽,以提高镰状柴胡的产量。
- 批准号:
21K15290 - 财政年份:2021
- 资助金额:
$ 101.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generating actionable science to inform sustainable freshwater ecosystem use and shoreline development in Canada in the face of increasing human pressure
面对日益增加的人类压力,生成可行的科学知识,为加拿大的可持续淡水生态系统利用和海岸线开发提供信息
- 批准号:
570434-2021 - 财政年份:2021
- 资助金额:
$ 101.03万 - 项目类别:
Alliance Grants
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
- 批准号:
2028230 - 财政年份:2021
- 资助金额:
$ 101.03万 - 项目类别:
Standard Grant