Collaborative Research: Dynamic Control and Separation of Microparticles in Fluids using Optical Whispering Gallery Mode Resonant Forces

合作研究:利用光学回音壁模式共振力动态控制和分离流体中的微粒

基本信息

  • 批准号:
    1661586
  • 负责人:
  • 金额:
    $ 33.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to create a new method for selective motion control of micrometer-sized particles suspended in liquids. The method is based on an optical counterpart to "whispering gallery" resonance observed in certain structures, in which a sound made at one point may be heard clearly in certain other special spots, even though it may be inaudible everywhere else. In this project, a suspended spherical particle plays the role of the whispering gallery, with the resonance determined by its diameter and optical properties relative to the surrounding liquid. Laser light with wavelength matched to the whispering gallery resonance will apply significant optical forces to the particle, while particles of even slightly different diameters will feel no effect. This allows extremely selective particle manipulation and separation based on size and optical characteristics, enabling compact and robust micro-opto-fluidic devices for use in industry, healthcare, and environmental applications. The project will engage students from Gordon College, an undergraduate institution, in state-of-the-art collaborative research and advance the growth of an undergraduate-focused research infrastructure. Gordon College undergraduates will develop hands-on expertise in optics, microfabrication, microfluidics, and control. The project will also engage graduate students from Boston University, a major research university, who will obtain valuable teaching and research mentoring skills.This project will investigate a method of separation using evanescent optical fields around an optical waveguide to exert forces on microparticles that are being carried in a flow field. These microparticles possess whispering gallery mode resonances that are known to be strongly dependent on the shape and size of the particles, ensuring an unprecedented selectivity of particles with narrowly defined geometric characteristics. Careful control of the forces and flow velocities allows for the design of particle trajectories, directing the selected ones into reservoirs to accomplish separation. To increase throughput, a networked control system model will be leveraged and communication and control policies designed that leverage the single actuation channel to simultaneously steer particles of different specific sizes. The project's approach has several desirable aspects: it has exquisite and tunable selectivity; it is applicable to solid particles as well as suspended liquid droplets; and it can be used in a compact and robust micro-opto-fluidic device. This work will advance fundamental science and engineering in several directions. It will provide detailed parametric study of the light propelling forces due to whispering gallery mode resonances and help to develop a fundamental understanding of the phenomenon. The particle separation application allows for the development of technology useful across various fields while also providing a setting to develop the field of networked control theory. Because a single actuator is employed to control the movement of multiple particles, this work requires a novel application of networked control theory and a new domain for exploring and resolving challenges in this field. The research will also push the boundaries in experimental fluid dynamics and optical science leading to the fabrication and test of a micro-opto-fluidic device.
本项目的目标是创建一种新的方法,用于悬浮在液体中的微米级颗粒的选择性运动控制。该方法基于在某些结构中观察到的“回音壁”共振的光学对应物,其中在一个点发出的声音可以在某些其他特殊点清楚地听到,即使它在其他地方可能听不见。在这个项目中,一个悬浮的球形颗粒扮演着回音壁的角色,其共振由其直径和相对于周围液体的光学性质决定。波长与回音壁共振相匹配的激光将对颗粒施加显著的光学力,而即使直径略有不同的颗粒也不会受到影响。这允许基于尺寸和光学特性的极有选择性的颗粒操作和分离,从而使紧凑且坚固的微光流器件能够用于工业、医疗保健和环境应用。该项目将吸引本科院校戈登学院的学生参与最先进的合作研究,并推动以本科生为中心的研究基础设施的发展。戈登学院的本科生将在光学,微加工,微流体和控制方面发展实践专业知识。该项目还将聘请来自主要研究型大学波士顿大学的研究生,他们将获得宝贵的教学和研究指导技能。该项目将研究利用光波导周围的渐逝光场对流场中携带的微粒施加力的分离方法。这些微粒具有回音壁模式共振,已知其强烈依赖于颗粒的形状和尺寸,确保了具有狭窄限定的几何特征的颗粒的前所未有的选择性。对力和流速的仔细控制允许设计颗粒轨迹,将选定的颗粒引导到储存器中以完成分离。为了提高吞吐量,将利用网络控制系统模型,并设计通信和控制策略,以利用单个驱动通道来同时引导不同特定尺寸的颗粒。该项目的方法有几个可取的方面:它具有精致和可调的选择性;它适用于固体颗粒以及悬浮液滴;它可以用于紧凑和强大的微光流体设备。这项工作将在几个方向上推进基础科学和工程。它将提供由于回音壁模式共振而产生的光推进力的详细参数研究,并有助于对该现象形成基本的理解。 颗粒分离应用允许开发跨各个领域的有用技术,同时还提供了开发网络控制理论领域的设置。由于采用单个执行器来控制多个粒子的运动,因此这项工作需要网络控制理论的新应用,以及探索和解决该领域挑战的新领域。该研究还将推动实验流体动力学和光学科学的边界,从而导致微型光流体设备的制造和测试。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Receding Horizon Linear Quadratic Tracking Design and Implementation: A Practical Study on a Dual-stage Piezoactuator
后退地平线线性二次跟踪设计与实现:双级压电执行器的实用研究
  • DOI:
    10.23919/acc53348.2022.9867651
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chang, Yuhe;Andersson, Sean B.
  • 通讯作者:
    Andersson, Sean B.
Receding horizon linear quadratic tracking control: a practical study on a dual=stage piezoactuator
后退地平线性二次跟踪控制:双级压电执行器的实际研究
Controlled microparticle separation using whispering gallery mode forces
  • DOI:
    10.1016/j.ifacol.2020.12.2519
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuhe Chang;O. Svitelskiy;K. Ekinci;S. Andersson
  • 通讯作者:
    Yuhe Chang;O. Svitelskiy;K. Ekinci;S. Andersson
"A comparison of two optimization-based control methods for scanning in SPM via feature tracking using a dual-stage nanopositioner
“使用双级纳米定位器通过特征跟踪进行 SPM 扫描的两种基于优化的控制方法的比较
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Andersson其他文献

Underwater robots: Motion and force control of vehicle manipulator systems, Gianluca Antonelli (Ed.); Springer, Berlin, Heidelberg, 2003, ISBN: 3-540-00054-2
  • DOI:
    10.1016/j.automatica.2005.10.003
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sean Andersson
  • 通讯作者:
    Sean Andersson

Sean Andersson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Andersson', 18)}}的其他基金

Decentralized optimal control of cooperating networked multi-agent systems
协作网络多智能体系统的分散最优控制
  • 批准号:
    1931600
  • 财政年份:
    2019
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Compressive Robotic Systems: Gaining Efficiency Through Sparsity in Dynamic Environments
协作研究:压缩机器人系统:通过动态环境中的稀疏性提高效率
  • 批准号:
    1562031
  • 财政年份:
    2016
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Detection and Tracking of Multiple Dynamic Targets with Cooperating Networked Agents
通过协作网络代理检测和跟踪多个动态目标
  • 批准号:
    1509084
  • 财政年份:
    2015
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
IDBR: Type A: Collaborative research: High-speed AFM imaging of dynamics on biopolymers through non-raster scanning
IDBR:A 型:合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
  • 批准号:
    1352729
  • 财政年份:
    2014
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Speed AFM through Compressed Sensing
合作研究:通过压缩感知实现高速 AFM
  • 批准号:
    1234845
  • 财政年份:
    2012
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Control for Single Molecule Tracking
职业:单分子追踪的非线性控制
  • 批准号:
    0845742
  • 财政年份:
    2009
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: A formal approach to the control of stochastic dynamic systems
DynSyst_Special_Topics:随机动态系统控制的形式化方法
  • 批准号:
    0928776
  • 财政年份:
    2009
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
IDBR: Simultaneous Tracking of Multiple Particles in Confocal Microscopy
IDBR:在共焦显微镜中同时跟踪多个粒子
  • 批准号:
    0649823
  • 财政年份:
    2007
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318854
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了