Decentralized optimal control of cooperating networked multi-agent systems
协作网络多智能体系统的分散最优控制
基本信息
- 批准号:1931600
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multi-agent systems encompass a broad spectrum of applications, ranging from connected autonomous vehicles and the emerging internet of cars, where the spatial domain may be hundreds of miles with time horizons over hours of days, to micro-air vehicles which operate over meter length and minute time scales, and down to nano-manipulation with nanometer spatial microsecond time resolution. This project seeks to address five key challenges in networked multi-agent systems: (1) scalability, necessitated by the increasing large-scale nature of the networked systems being designed, (2) autonomy at the individual level, required to ensure a resilient and secure system, (3) communication that is secure and efficient, particularly crucial in wireless settings where the agents have limited energy resources, (4) avoiding local optima that arise from the complex nature of the system interactions and which may yield poor performance, and (5) exploiting real-time data, taking advantage of the modern reality of data-rich environments. While the core of the project is centered on a theoretical approach that extends over the diverse length and time scales needed, it also includes experimental validation using robotic platforms that will provide a platform to showcase and communicate results to a broad audience.The scope of the proposed project is captured through a general optimization (both static and dynamic) framework which encompasses the vast majority of interesting problems faced by researchers and practitioners. Within this framework, we will pursue three specific tasks: (1) Develop on-line solutions for dynamic optimization problems in networked multi-agent systems, (2) Determine when decentralization without sacrificing the performance of a centralized solution is possible and develop explicit decentralized control algorithms even in cases where some performance degradation is needed, and (3) Address the challenge of multiple local minima in the optimization through the use of boosting functions to escape those local optima. The intellectual merit of these tasks lies in three conceptual cornerstones: (1) Replacing the traditional time- driven paradigm with an event-driven approach, allowing for algorithms whose complexity grows with the number of such events, not the state dimensionality of the network, (2) Using a data-driven approach to optimization, allowing for an approach which can handle the increasing complexity of real-world systems where traditional approaches based on elegant but often inadequate classical models fail, and (3) Escaping local optima in distributed optimization, where the use of novel mechanisms for escaping those local solutions overcomes the limitations inherent to gradient-based approaches. The project is built upon a framework for networked multi-agent systems that is extremely broad, encompassing sub-problems such as coverage control, consensus, persistent monitoring, and optimal formation control, and application domains from connected automated vehicles down to nano-manipulation. As such, our research will advance the state-of-the-art in all domains that rely on networked systems. In addition, specific tasks on education and outreach will be pursued, including hosting rising high school seniors in the labs of the PIs for a summer research internship, showcasing the results to middle and high-school students through demonstrations with mobile robots, and engaging undergraduate students in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多智能体系统涵盖了广泛的应用,从互联的自动驾驶汽车和新兴的车联网(其空间域可能是数百英里,时间跨度在几天内),到在米长和分钟时间尺度上操作的微型飞行器,再到纳米级空间微秒时间分辨率的纳米操纵。该项目致力于解决联网多代理系统中的五个关键挑战:(1)可扩展性,这是由于正在设计的联网系统的日益大规模的性质所必需的;(2)个体级别的自主性,确保弹性和安全的系统所必需的;(3)安全和高效的通信,在代理具有有限能量资源的无线环境中尤其重要;(4)避免由于系统交互的复杂性质而产生的局部最优,并且可能产生较差的性能;以及(5)利用实时数据,利用数据丰富的环境的现代现实。虽然该项目的核心是一种理论方法,该方法跨越了所需的不同长度和时间尺度,但它也包括使用机器人平台的实验验证,该平台将提供一个向广大受众展示和交流结果的平台。拟议项目的范围通过一个通用优化(静态和动态)框架来捕获,该框架涵盖了研究人员和实践者面临的绝大多数有趣的问题。在这个框架内,我们将追求三个具体的任务:(1)开发网络多智能体系统中动态优化问题的在线解决方案;(2)确定何时在不牺牲集中式解决方案的性能的情况下分散是可能的,并开发显式的分散控制算法,即使在需要一些性能降级的情况下也是如此;以及(3)通过使用Boost函数来避免那些局部最优,从而解决优化中存在多个局部极小的挑战。这些任务的智力优势在于三个概念基石:(1)用事件驱动的方法取代传统的时间驱动的范式,允许算法的复杂性随着此类事件的数量而不是网络的状态维度而增长,(2)使用数据驱动的方法进行优化,允许使用一种方法来处理现实世界系统日益增长的复杂性,其中基于优雅但往往不充分的经典模型的传统方法无法实现,以及(3)在分布式优化中避免局部最优,其中使用新颖的机制来避免这些局部解的使用克服了基于梯度的方法固有的限制。该项目建立在网络多智能体系统框架的基础上,该框架非常广泛,包括覆盖控制、共识、持续监测和最优编队控制等子问题,以及从联网的自动车辆到纳米操纵的应用领域。因此,我们的研究将在依赖网络系统的所有领域推进最先进的技术。此外,还将继续开展教育和外展方面的具体任务,包括在PIS的实验室接待正在崛起的高中生进行暑期研究实习,通过移动机器人演示向初中生和高中生展示结果,以及让本科生参与研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(67)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal coverage control of stationary and moving agents under effective coverage constraints
有效覆盖约束下静止和移动主体的最优覆盖控制
- DOI:10.1016/j.automatica.2023.111236
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Sun, Xinmiao;Ren, Mingli;Ding, Da-Wei;Cassandras, Christos G.
- 通讯作者:Cassandras, Christos G.
Learning Feasibility Constraints for Control Barrier Functions
学习控制屏障函数的可行性约束
- DOI:10.23919/ecc57647.2023.10178142
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Xiao, Wei;Cassandras, Christos G.;Belta, Calin A.
- 通讯作者:Belta, Calin A.
Feasibility-Guided Learning for Constrained Optimal Control Problems
- DOI:10.1109/cdc42340.2020.9303857
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Wei Xiao;C. Belta;C. Cassandras
- 通讯作者:Wei Xiao;C. Belta;C. Cassandras
Greedy Initialization for Distributed Persistent Monitoring in Network Systems
网络系统中分布式持久监控的贪婪初始化
- DOI:10.1016/j.automatica.2021.109943
- 发表时间:2021
- 期刊:
- 影响因子:6.4
- 作者:Welikala, S.;Cassandras C.G.
- 通讯作者:Cassandras C.G.
Feasibility Guaranteed Traffic Merging Control Using Control Barrier Functions
- DOI:10.23919/acc53348.2022.9867620
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Kaiyuan Xu;Wei Xiao;C. Cassandras
- 通讯作者:Kaiyuan Xu;Wei Xiao;C. Cassandras
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Andersson其他文献
Underwater robots: Motion and force control of vehicle manipulator systems, Gianluca Antonelli (Ed.); Springer, Berlin, Heidelberg, 2003, ISBN: 3-540-00054-2
- DOI:
10.1016/j.automatica.2005.10.003 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:
- 作者:
Sean Andersson - 通讯作者:
Sean Andersson
Sean Andersson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Andersson', 18)}}的其他基金
Collaborative Research: Dynamic Control and Separation of Microparticles in Fluids using Optical Whispering Gallery Mode Resonant Forces
合作研究:利用光学回音壁模式共振力动态控制和分离流体中的微粒
- 批准号:
1661586 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: Compressive Robotic Systems: Gaining Efficiency Through Sparsity in Dynamic Environments
协作研究:压缩机器人系统:通过动态环境中的稀疏性提高效率
- 批准号:
1562031 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Detection and Tracking of Multiple Dynamic Targets with Cooperating Networked Agents
通过协作网络代理检测和跟踪多个动态目标
- 批准号:
1509084 - 财政年份:2015
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
IDBR: Type A: Collaborative research: High-speed AFM imaging of dynamics on biopolymers through non-raster scanning
IDBR:A 型:合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
- 批准号:
1352729 - 财政年份:2014
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Collaborative Research: High-Speed AFM through Compressed Sensing
合作研究:通过压缩感知实现高速 AFM
- 批准号:
1234845 - 财政年份:2012
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CAREER: Nonlinear Control for Single Molecule Tracking
职业:单分子追踪的非线性控制
- 批准号:
0845742 - 财政年份:2009
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: A formal approach to the control of stochastic dynamic systems
DynSyst_Special_Topics:随机动态系统控制的形式化方法
- 批准号:
0928776 - 财政年份:2009
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
IDBR: Simultaneous Tracking of Multiple Particles in Confocal Microscopy
IDBR:在共焦显微镜中同时跟踪多个粒子
- 批准号:
0649823 - 财政年份:2007
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似国自然基金
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
最优证券设计及完善中国资本市场的路径选择
- 批准号:70873012
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
慢性阻塞性肺病机械通气时最佳呼气末正压的生理学研究
- 批准号:30770952
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
- 批准号:
10822182 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Personalized Surgical Approach for the Treatment of Children with Obstructive Sleep Apnea and Small Tonsils
治疗患有阻塞性睡眠呼吸暂停和小扁桃体的儿童的个性化手术方法
- 批准号:
10634395 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
An integrated community-clinic model of optimized implementation strategies to increase early detection of breast and cervical cancers in Kenya
优化实施策略的综合社区诊所模型,以提高肯尼亚乳腺癌和宫颈癌的早期发现率
- 批准号:
10876524 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Designing a mobile intervention for dysregulated eating and weight gain prevention in adolescents
设计针对青少年饮食失调和体重增加预防的移动干预措施
- 批准号:
10711350 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Long-Term Trajectories of Accelerated Biological Aging and Functional Decline Associated with Breast Cancer and its Treatment
与乳腺癌及其治疗相关的加速生物衰老和功能衰退的长期轨迹
- 批准号:
10729432 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别: