Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
基本信息
- 批准号:1661658
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A remarkable aspect of algebraic number theory lies in the connections it finds between objects that appear to be of entirely different natures. The overarching principle of the research of the PI is that certain algebraic problems can be reinterpreted directly as geometric problems in higher dimension, providing fascinating connections between objects from different parts of mathematics. A great wealth of such connections have been found indirectly through intermediate objects of an analytic nature. The research outlined in the proposal aims to provide a window through which well-known conjectures and statements of arithmetic may be seen in a new and more direct light.The PI has conjectured an intricate but explicit relationship between modular symbols and the arithmetic of cyclotomic fields that may be viewed as refining the Iwasawa main conjecture. Roughly speaking, this conjecture identifies class groups of cyclotomic fields with quotients of homology groups of modular curves by actions of Eisenstein ideals. The central project of the award is the extension of this conjecture to higher dimensions and other global fields. The expectation is that the geometry of locally symmetric spaces should explicitly determine the arithmetic of lattices in Galois representations, which is to say the structure of Selmer groups.
代数论的一个显著特点在于,它发现了看起来性质完全不同的物体之间的联系。PI研究的首要原则是,某些代数问题可以直接重新解释为更高维度的几何问题,在来自数学不同部分的对象之间提供了迷人的联系。通过分析性质的中间对象间接地发现了大量这样的联系。该提案中概述的研究旨在提供一个窗口,通过它可以更直接地新地看到众所周知的猜想和算术语句。PI猜想了模符号和割圆域的算法之间复杂而明确的关系,这可以被认为是对岩泽主要猜想的完善。粗略地说,这个猜想通过Eisenstein理想的作用,用模曲线的同调群的商来确定分圆域的类群。该奖项的中心项目是将这一猜想扩展到更高的维度和其他全球领域。期望局部对称空间的几何应该明确地决定Galois表示中的格的算术,也就是Selmer群的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Romyar Sharifi其他文献
Romyar Sharifi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Romyar Sharifi', 18)}}的其他基金
Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
- 批准号:
1401122 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Conferences and Meetings: Southwest Center for Arithmetic Geometry
会议:西南算术几何中心
- 批准号:
1161523 - 财政年份:2013
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Iwasawa Theory and Galois Representations
岩泽理论和伽罗瓦表示
- 批准号:
0901526 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
The Structure of Galois Groups Over Number Fields
数域上伽罗瓦群的结构
- 批准号:
0102016 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Fellowship Award
相似海外基金
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Studentship
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
SaTC: CORE: Small: Markoff Triples, Cryptography, and Arithmetic of Thin Groups
SaTC:核心:小:马可夫三元组、密码学和薄群算术
- 批准号:
2154624 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
- 批准号:
2142709 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Arithmetic statistics of Selmer groups with a Galois action
具有伽罗瓦动作的 Selmer 群的算术统计
- 批准号:
2742677 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Studentship