Modular Symbols in Arithmetic
算术中的模符号
基本信息
- 批准号:1801963
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A remarkable aspect of algebraic number theory lies in its revealing of connections between objects that appear to be of entirely different natures. The overarching principle of the research of the PI is that certain algebraic problems can be reinterpreted directly as geometric problems in higher dimension, providing intriguing connections between objects from different parts of mathematics. A great wealth of such connections have been found indirectly through intermediate objects of an analytic nature. The research of the PI aims to provide a window through which well-known conjectures and statements of arithmetic may be seen in a new and more direct light.The PI has conjectured an intricate but explicit relationship between modular symbols and cup products of cyclotomic units. This and its proposed extensions say roughly that class groups of cyclotomic fields are explicitly determined by and determine homology groups of modular curves reduced modulo Eisenstein ideals. The project aims to strengthen his conjecture and extend it and known results to higher-dimensional algebraic groups and other global fields. This involves substantial foundational work to develop the necessary framework for the desired formulations that are the primary focus of the project. The expectation is that the geometry of locally symmetric spaces should explicitly determine the arithmetic of lattices in Galois representations, which is to say the structure of Selmer groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数数论的一个显著方面在于它揭示了似乎具有完全不同性质的对象之间的联系。 PI研究的首要原则是,某些代数问题可以直接重新解释为更高维度的几何问题,在数学的不同部分之间提供有趣的联系。 通过分析性质的中介对象,已经间接地发现了大量这样的联系。 PI的研究旨在提供一个窗口,通过它可以从一个新的和更直接的角度来看待著名的算术图形和语句。PI阐明了模符号与分圆单位的杯积之间复杂而明确的关系。 这一点及其提出的扩展粗略地说,分圆域的类群是明确确定的,并确定模曲线约化模爱森斯坦理想的同调群。 该项目旨在加强他的猜想,并将其和已知结果扩展到高维代数群和其他全球领域。 这涉及大量的基础工作,为作为项目主要重点的理想配方制定必要的框架。 期望的是,局部对称空间的几何应该明确地确定在伽罗瓦表示,这是说结构的塞尔默groups.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher Chern classes in Iwasawa theory
- DOI:10.1353/ajm.2020.0017
- 发表时间:2015-12
- 期刊:
- 影响因子:1.7
- 作者:F. Bleher;T. Chinburg;Richard Greenberg;M. Kakde;G. Pappas;R. Sharifi;M. Taylor
- 通讯作者:F. Bleher;T. Chinburg;Richard Greenberg;M. Kakde;G. Pappas;R. Sharifi;M. Taylor
Iwasawa Theory: A Climb up the Tower
岩泽理论:爬上塔楼
- DOI:10.1090/noti1759
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Sharifi, Romyar
- 通讯作者:Sharifi, Romyar
Exterior Powers in Iwasawa Theory
岩泽理论中的外部权力
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Frauke M. Bleher, Ted Chinburg
- 通讯作者:Frauke M. Bleher, Ted Chinburg
Reciprocity maps with restricted ramification
具有有限影响的互易图
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Sharifi, Romyar T.
- 通讯作者:Sharifi, Romyar T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Romyar Sharifi其他文献
Romyar Sharifi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Romyar Sharifi', 18)}}的其他基金
Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
- 批准号:
1661658 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
- 批准号:
1401122 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conferences and Meetings: Southwest Center for Arithmetic Geometry
会议:西南算术几何中心
- 批准号:
1161523 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Iwasawa Theory and Galois Representations
岩泽理论和伽罗瓦表示
- 批准号:
0901526 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
The Structure of Galois Groups Over Number Fields
数域上伽罗瓦群的结构
- 批准号:
0102016 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Fellowship Award
相似海外基金
Symbolic representation of objects via visual symbols in the primates brain
灵长类动物大脑中通过视觉符号对物体进行符号表示
- 批准号:
23K12942 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Educational Use of War Heritage: Investigation on historical symbols and the selection of memorial site
战争遗产的教育利用:历史符号的调查和纪念地点的选择
- 批准号:
23K02053 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the mnemonic properties of symbols
浅谈符号的助记特性
- 批准号:
547484-2020 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Women as Leaders, Policy-Makers, and Symbols
合作研究:女性作为领导者、政策制定者和象征
- 批准号:
2243810 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
symbols of Unity: Pride Flags and the Development of LGBTQ+ Identities in London, Berlin, and New York after Stonewall.
团结的象征:石墙事件之后伦敦、柏林和纽约的骄傲旗帜和 LGBTQ 身份的发展。
- 批准号:
2763962 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Studentship
Arithmetic statistics of noncommutative modular symbols
非交换模符号的算术统计
- 批准号:
459838152 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
WBP Fellowship
On the mnemonic properties of symbols
浅谈符号的助记特性
- 批准号:
547484-2020 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Postgraduate Scholarships - Doctoral
Number symbols in the brain and mind
大脑和心灵中的数字符号
- 批准号:
RGPIN-2017-04644 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Icons in Context: Rethinking Symbols of Power at the Time of Stonehenge
上下文中的图标:重新思考巨石阵时代的权力象征
- 批准号:
AH/T007265/1 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Research Grant