Modular Symbols in Arithmetic

算术中的模符号

基本信息

  • 批准号:
    2101889
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The focus of this research project is in number theory, an ancient subject that grew out of the study of arithmetic properties of the integers. Today, connections between arithmetic objects of different mathematical natures (algebraic, geometric, and analytic) form a hallmark of this field. The research in this award fits into this theme while exploring deep connections that were perhaps unexpected until recently. The general principle of the research is that certain algebraic problems can be reinterpreted as geometric problems in a higher dimension: for example, paths on a certain curve determine certain “products” of arithmetically interesting numbers. The research of the PI aims to uncover intricate but explicit relationships of this sort with the broad aim of providing a window through which well-known conjectures and statements of arithmetic may be seen in a new light. Graduate students supported by the award will receive training to contribute towards the research.The research supported by this award concerns analogues of a partly conjectural relationship between modular symbols and Steinberg symbols of cyclotomic units. This says roughly that class groups of cyclotomic fields are explicitly determined by and determine homology groups of modular curves reduced modulo Eisenstein ideals: an explicit map on symbols is expected to be inverse to a map constructed from the Galois action on the cohomology of a modular curve. The primary focus of the award is the extension of the framework and known results to higher-dimensional algebraic groups and other global fields. In particular, the PI plans to significantly generalize a motivic construction of the explicit map in the original conjecture and to analyze Galois representations that should give the inverse maps in cases of arithmetic interest. The overall expectation is that the geometry of locally symmetric spaces should explicitly determine the arithmetic of lattices in Galois representations, which is to say the structure of Selmer groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目的重点是数论,这是一个古老的学科,起源于整数的算术性质的研究。今天,不同数学性质(代数、几何和分析)的算术对象之间的联系形成了这个领域的标志。该奖项的研究符合这一主题,同时探索了直到最近才意想不到的深层联系。研究的一般原则是,某些代数问题可以重新解释为更高维度的几何问题:例如,某条曲线上的路径确定算术有趣数的某些“乘积”。PI的研究旨在揭示此类复杂但明确的关系,其广泛目标是提供一个窗口,通过该窗口可以从新的角度看待众所周知的猜想和算术陈述。该奖项支持的研究生将接受培训,为研究做出贡献。该奖项支持的研究涉及分圆单位的模符号和Steinberg符号之间的部分几何关系的类似物。这大概是说,分圆域的类群明确地由模曲线的模艾森斯坦理想约化的同调群确定,并且确定模曲线的模艾森斯坦理想约化的同调群:符号上的显式映射被期望与由模曲线的上同调上的伽罗瓦作用所构造的映射是逆的。该奖项的主要重点是将框架和已知结果扩展到高维代数群和其他全球领域。特别是,PI计划显着推广原猜想中显式映射的motivic构造,并分析在算术兴趣的情况下应该给出逆映射的伽罗瓦表示。总体的期望是,局部对称空间的几何应该明确地确定伽罗瓦表示中的格的算术,也就是说,塞尔默群的结构。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Bockstein maps and Massey products
广义 Bockstein 地图和 Massey 产品
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lam, Yeuk Hay;Liu, Yuan;Sharifi, Romyar;Wake, Preston;Wang, Jiuya
  • 通讯作者:
    Wang, Jiuya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Romyar Sharifi其他文献

Romyar Sharifi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Romyar Sharifi', 18)}}的其他基金

Modular Symbols in Arithmetic
算术中的模符号
  • 批准号:
    1801963
  • 财政年份:
    2018
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
  • 批准号:
    1661658
  • 财政年份:
    2016
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Selmer groups and the arithmetic of modular symbols
Selmer 群和模符号运算
  • 批准号:
    1401122
  • 财政年份:
    2014
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Conferences and Meetings: Southwest Center for Arithmetic Geometry
会议:西南算术几何中心
  • 批准号:
    1161523
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Iwasawa 2010
岩泽 2010
  • 批准号:
    1005225
  • 财政年份:
    2010
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Iwasawa Theory and Galois Representations
岩泽理论和伽罗瓦表示
  • 批准号:
    0901526
  • 财政年份:
    2009
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
The Structure of Galois Groups Over Number Fields
数域上伽罗瓦群的结构
  • 批准号:
    0102016
  • 财政年份:
    2001
  • 资助金额:
    $ 37万
  • 项目类别:
    Fellowship Award

相似海外基金

Symbolic representation of objects via visual symbols in the primates brain
灵长类动物大脑中通过视觉符号对物体进行符号表示
  • 批准号:
    23K12942
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Educational Use of War Heritage: Investigation on historical symbols and the selection of memorial site
战争遗产的教育利用:历史符号的调查和纪念地点的选择
  • 批准号:
    23K02053
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the mnemonic properties of symbols
浅谈符号的助记特性
  • 批准号:
    547484-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Women as Leaders, Policy-Makers, and Symbols
合作研究:女性作为领导者、政策制定者和象征
  • 批准号:
    2243810
  • 财政年份:
    2022
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
symbols of Unity: Pride Flags and the Development of LGBTQ+ Identities in London, Berlin, and New York after Stonewall.
团结的象征:石墙事件之后伦敦、柏林和纽约的骄傲旗帜和 LGBTQ 身份的发展。
  • 批准号:
    2763962
  • 财政年份:
    2022
  • 资助金额:
    $ 37万
  • 项目类别:
    Studentship
Arithmetic statistics of noncommutative modular symbols
非交换模符号的算术统计
  • 批准号:
    459838152
  • 财政年份:
    2021
  • 资助金额:
    $ 37万
  • 项目类别:
    WBP Fellowship
On the mnemonic properties of symbols
浅谈符号的助记特性
  • 批准号:
    547484-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Number symbols in the brain and mind
大脑和心灵中的数字符号
  • 批准号:
    RGPIN-2017-04644
  • 财政年份:
    2021
  • 资助金额:
    $ 37万
  • 项目类别:
    Discovery Grants Program - Individual
Icons in Context: Rethinking Symbols of Power at the Time of Stonehenge
上下文中的图标:重新思考巨石阵时代的权力象征
  • 批准号:
    AH/T007265/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
On the mnemonic properties of symbols
浅谈符号的助记特性
  • 批准号:
    547484-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了