Theoretical Understanding of Porosity-Induced Mechanisms during Solidification of Cast Alloys and their Influence on Process-Structure-Property Correlations

铸造合金凝固过程中孔隙诱导机制的理论理解及其对工艺-结构-性能相关性的影响

基本信息

  • 批准号:
    1662854
  • 负责人:
  • 金额:
    $ 38.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Casting is a process in which liquid metal is poured into a mold and then allowed to cool and solidify. Cast alloys are used in many diverse applications, ranging from automotive parts to aerospace components. Porosity that arises during the solidification process has long been recognized as a critical factor in limiting the mechanical performance of cast alloys, especially under repetitive use that results in "fatigue" behavior. There is a strong drive towards minimizing porosity through a combination of casting design and optimization of the solidification process. To achieve that, a fundamental understanding of the underlying physics of porosity formation, growth and mobility and its impact on fatigue, and an enhanced predictive capability become necessary. This research addresses these needs through theoretical and computational modeling of processing and behavior at multiple length scales. Results from this research will lead to time- and cost-effective design and optimization processes that automotive, aerospace, and other industries can utilize to obtain better alloys and alloy components. This research features a synergistic approach based on materials science, manufacturing, and computational mechanics, which will expose graduate students to broader concepts and skills. Active focus will be given to ensure participation of underrepresented undergraduate students in research and outreach to high school students will strive to inspire interest in engineering education from an early age.The objective of this research is to acquire a fundamental understanding of the mechanisms that govern porosity nucleation, growth, and migration during directional solidification process and employ that understanding to identify process-structure-property relations in cast alloys. This objective will be accomplished based on analysis and interpretation of existing solidification experimental data using theoretical and computational tools. Competing and contributing mechanisms that control porosity nucleation (solidification shrinkage and hydrogen segregation), growth (hydrogen diffusion, solidification front grow, and dendritic growth), and migration (buoyancy and thermocapillary effects) will be theorized and modeled. The multiscale computational framework, which will consist of a developed phase-field model and an existing internal state variable model combined with first-principles calculations, crystal plasticity, and the finite element method, will enable a phenomenological interpretation of the solidification process at multiple length scales. The accumulated constitutive descriptions will then be used to develop process-structure-property correlations.
铸造是一种将液态金属倒入模具中,然后冷却和凝固的过程。铸造合金用于许多不同的应用,从汽车部件到航空航天部件。在凝固过程中产生的孔隙率长期以来被认为是限制铸造合金机械性能的关键因素,特别是在导致“疲劳”行为的重复使用下。通过铸造设计和凝固过程的优化相结合,有一种强烈的驱动力,使孔隙率最小化。为了实现这一目标,有必要对孔隙形成、生长和流动性的基本物理特性及其对疲劳的影响以及增强的预测能力进行基本了解。本研究通过在多个长度尺度上对处理和行为进行理论和计算建模来满足这些需求。这项研究的结果将导致时间和成本效益的设计和优化过程,汽车,航空航天和其他行业可以利用,以获得更好的合金和合金部件。这项研究的特点是基于材料科学,制造和计算力学的协同方法,这将使研究生接触到更广泛的概念和技能。积极的重点将是确保参与研究的代表性不足的本科生和外联高中学生将努力激发兴趣工程教育从早期的年龄。这项研究的目标是获得一个基本的了解机制,支配孔隙成核,生长,以及定向凝固过程中的迁移,并利用这种理解来确定铸造合金中的工艺-组织-性能关系。这一目标将完成现有的凝固实验数据的分析和解释的基础上,使用理论和计算工具。控制孔隙形核(凝固收缩和氢偏析),生长(氢扩散,凝固前沿生长和枝晶生长)和迁移(浮力和热毛细效应)的竞争和贡献机制将被理论化和建模。多尺度计算框架,这将包括一个发达的相场模型和现有的内部状态变量模型结合第一性原理计算,晶体塑性,和有限元方法,将使在多个长度尺度的凝固过程的现象学解释。累积的本构描述,然后将被用来开发过程-结构-性能的相关性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the Precipitation Kinetics and Hardening Effects of γ” in Inconel 625 Using a Combination of Meso-Scale Phase-Field Simulations and Macro-Scale Precipitate Strengthening Calculations
结合细观尺度相场模拟和宏观尺度析出强化计算研究 Inconel 625 中 γ 的析出动力学和硬化效应
Investigation on Microsegregation of IN718 Alloy During Additive Manufacturing via Integrated Phase-Field and Finite-Element Modeling
  • DOI:
    10.1007/s11665-018-3620-3
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    X. Wang;P. Liu;Yi Ji;Y. Liu;M. H. Horstemeyer;L. Chen
  • 通讯作者:
    X. Wang;P. Liu;Yi Ji;Y. Liu;M. H. Horstemeyer;L. Chen
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
  • DOI:
    10.1115/1.4043798
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Wang;Pengwei Liu;Yaohong Xiao;X. Cui;Zhen Hu;Lei Chen
  • 通讯作者:
    Zhuo Wang;Pengwei Liu;Yaohong Xiao;X. Cui;Zhen Hu;Lei Chen
An Integrated Model for Prediction of Process-Structure-Property Relationship for Additively Manufactured Al-10Si-Mg Alloy
增材制造 Al-10Si-Mg 合金工艺-组织-性能关系集成预测模型
  • DOI:
    10.4271/2020-01-1075
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, Wenhua;Wang, Zhuo;Yenusah, Caleb;Liu, Yucheng
  • 通讯作者:
    Liu, Yucheng
La2O3 addition for improving the brazed joints of WC-Co/1Cr13
  • DOI:
    10.1016/j.jmatprotec.2018.11.045
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Y. Xiao;P. Liu;Z. Wang;Y. Wang;K. Feng;L. Chen
  • 通讯作者:
    Y. Xiao;P. Liu;Z. Wang;Y. Wang;K. Feng;L. Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tonya Stone其他文献

Tonya Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tonya Stone', 18)}}的其他基金

Collaborative Research: Professional Preparation of Underrepresented Minority PhD's and Post-Docs for a Career in Engineering Academia
合作研究:为少数族裔博士和博士后在工程学术界的职业生涯提供专业准备
  • 批准号:
    1734814
  • 财政年份:
    2017
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Standard Grant
BRIGE: Multiscale Modeling and Simulation of the Consolidation of Metallic Nanoparticles
BRIGE:金属纳米粒子固结的多尺度建模与模拟
  • 批准号:
    1032637
  • 财政年份:
    2010
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Research Grant
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 38.67万
  • 项目类别:
    ARC Future Fellowships
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
  • 批准号:
    DP240101775
  • 财政年份:
    2024
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Discovery Projects
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
  • 批准号:
    DP240102899
  • 财政年份:
    2024
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Discovery Projects
Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 38.67万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了