Dynamic 3D Printing With In Situ Depolarization: A New Biomanufacturing Paradigm for Guided Cell-Cell Communication

具有原位去极化的动态 3D 打印:引导细胞间通信的新生物制造范式

基本信息

  • 批准号:
    1663095
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

In an electrohydrodynamics (EHD)-based additive manufacturing (AM) process, an applied voltage pulls a cylindrical jet of polymer material from a needle to a collector plate. The cylindrical jet forms a deposited fiber that acquires a characteristic charge. Conventional EHD processes enable direct printing of materials at small scales, but are hampered by limited accuracy and pattern control of the deposited charged fibers. To address this limitation, this research focuses on the fundamental understanding of fiber charge effects observed in EHD processes. It is hypothesized that restoring a neutral fiber charge will enable fibers to be precisely deposited. In the absence of a net charge, the fibers can be aligned and layered to produce a 3D biological substrate for cells to attach and function. Specifically, this fundamental knowledge will yield a biological substrate seeded with rat brain neural cells and endothelial cells. In this two-cell culture platform, the morphology of the neural cells are directed by the deposited fiber architecture to form physical contacts with the endothelial cells. The results of this work can have a significant impact on the life sciences by furnishing robust 3D cell culture platforms for drug screening and fundamental cell studies. Moreover, the AM methodology can be adapted for precision pattern control of polymer fiber structures across a wide range of industries, including electronics and medicine. The research outcomes will be integrated into the undergraduate curriculum as well as introduce high school students to advanced manufacturing, and broaden participation of underrepresented groups in research.The overall goal of this research is EHD-based additive manufacturing of biological substrates composed of discharged fibers. Such fibers can be reliably oriented in prescribed directions and positions to spatially guide cell morphology. Currently, the residual charge entrapped within successively deposited EHD fibers yields electrostatic forces between fibers that constrain the printed pattern resolution. The first research objective is to understand the effects of print surface temperature on the residual fiber charge. A PID-controlled thermoelectric printbed will be constructed to allow fundamental investigations regarding thermal depolarization of the printed fibers to a neutral charge state. A picoammeter will be integrated to enable in-process fiber charge measurements. Temperature and time-resolved charge measurements will be correlated to quantify the charge decay phenomena. Fiber placement accuracy will be measured as a ratio of inter-fiber distance to fiber diameter using scanning electron microscopy. The second research objective is to test the effect of dynamic fiber placement accuracy on prescribed cell-cell contacts in a two-cell culture model of rat brain neural cells and endothelial cells. To accomplish this objective, the discharged fiber surface will be patterned with growth factors along the layering direction. These growth factors will stimulate the neural cells to project extensions that form contacts with endothelial cells on the topmost layer. Immunochemistry of cell surface markers and barrier permeability measurements will be conducted to confirm cell-cell communication between the rat brain neural and endothelial cells.
在基于电流体动力学(EHD)的增材制造(AM)工艺中,施加的电压将聚合物材料的圆柱形射流从针拉到收集器板。圆柱形射流形成获得特征电荷的沉积纤维。传统的EHD工艺能够以小规模直接打印材料,但受到沉积的带电纤维的有限精度和图案控制的阻碍。为了解决这个问题,本研究的重点是EHD过程中观察到的纤维电荷效应的基本理解。假设恢复中性纤维电荷将使纤维能够精确沉积。在没有净电荷的情况下,纤维可以对齐和分层,以产生用于细胞附着和功能的3D生物基质。具体地说,这些基础知识将产生一个生物基板与大鼠脑神经细胞和内皮细胞接种。在这种双细胞培养平台中,神经细胞的形态由沉积的纤维结构引导以与内皮细胞形成物理接触。这项工作的结果可以通过为药物筛选和基础细胞研究提供强大的3D细胞培养平台,对生命科学产生重大影响。此外,AM方法可适用于包括电子和医药在内的广泛行业的聚合物纤维结构的精确图案控制。研究成果将被整合到本科课程中,并向高中生介绍先进制造,扩大代表性不足的群体在研究中的参与。本研究的总体目标是基于EHD的放电纤维组成的生物基质的增材制造。这种纤维可以可靠地定向在规定的方向和位置,以空间引导细胞形态。目前,在连续沉积的EHD纤维内捕获的残余电荷在纤维之间产生静电力,这限制了印刷图案的分辨率。第一个研究目的是了解印刷表面温度对残余纤维电荷的影响。一个PID控制的热电打印床将被构造成允许关于打印纤维的热去极化到中性电荷状态的基本调查。一个皮安计将被集成,使过程中的光纤电荷测量。温度和时间分辨的电荷测量将被关联以量化电荷衰减现象。纤维放置精度将使用扫描电子显微镜测量为纤维间距离与纤维直径的比率。第二个研究目标是测试动态纤维放置精度对大鼠脑神经细胞和内皮细胞的双细胞培养模型中规定的细胞-细胞接触的影响。为了实现这一目的,排出的纤维表面将沿成层方向沿着用生长因子形成图案。这些生长因子将刺激神经细胞投射延伸,与最顶层的内皮细胞形成接触。将进行细胞表面标志物的免疫化学和屏障渗透性测量,以确认大鼠脑神经细胞和内皮细胞之间的细胞间通讯。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advancing a real-time image-based jet lag tracking methodology for optimizing print parameters and assessing melt electrowritten fiber quality
  • DOI:
    10.1016/j.addma.2022.102764
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    11
  • 作者:
    K. Cao;Fucheng Zhang;A. Zaeri;Ralf Zgeib;R. Chang
  • 通讯作者:
    K. Cao;Fucheng Zhang;A. Zaeri;Ralf Zgeib;R. Chang
A Charge-Based Mechanistic Study into the Effects of Process Parameters on Fiber Accumulating Geometry for a Melt Electrohydrodynamic Process
  • DOI:
    10.3390/pr8111440
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    K. Cao;Fucheng Zhang;R. Chang
  • 通讯作者:
    K. Cao;Fucheng Zhang;R. Chang
Analytical interpretation of microscale fiber deviation in designing for polymer melt electrohydrodynamic-based additive manufacturing
基于聚合物熔体电流体动力学的增材制造设计中微尺度纤维偏差的分析解释
  • DOI:
    10.1016/j.addma.2022.103035
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Cao, Kai;Zhang, Fucheng;Wang, Bijun;Sun, Yuning;Zaeri, Ahmadreza;Zgeib, Ralf;Mansouri, Mo;Chang, Robert C.
  • 通讯作者:
    Chang, Robert C.
A Fundamental Study of Charge Effects on Melt Electrowritten Polymer Fibers
  • DOI:
    10.1016/j.matdes.2019.107857
  • 发表时间:
    2019-09-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Ding, Houzhu;Cao, Kai;Chang, Robert C.
  • 通讯作者:
    Chang, Robert C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Chang其他文献

Expression and characterization of a low molecular weight recombinant human gelatin: development of a substitute for animal-derived gelatin with superior features.
低分子量重组人明胶的表达和表征:开发具有优越特性的动物源明胶替代品。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    David R. Olsen;Jenny Y Jiang;Robert Chang;R. Duffy;M. Sakaguchi;S. Leigh;R. Lundgard;Julia Ju;F. Buschman;V. Truong;Binh Pham;J. Polarek
  • 通讯作者:
    J. Polarek
strongDevelopment of a first-in-class autologous B cell therapy for the treatment of Fabry disease/strong
强化一流的自体B细胞疗法用于治疗Fabry疾病/强
  • DOI:
    10.1016/j.ymgme.2023.107818
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Eileen Elliott;Rosa Romano;Johnny Arenas;Ago Ahene;Inosencio Casanova;Robert Chang;David Bengford;Moises Hernandez;Grant Li;Ariel Pios;Smrithi Rajendiran;Kerri Somebang;Kolton Zepecki-France;Thomas Brennan;Kathleen Boyle;James A. Rakestraw
  • 通讯作者:
    James A. Rakestraw
<strong>Development of a first-in-class autologous B cell therapy for the treatment of Fabry disease</strong>
  • DOI:
    10.1016/j.ymgme.2023.107818
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eileen Elliott;Rosa Romano;Johnny Arenas;Ago Ahene;Inosencio Casanova;Robert Chang;David Bengford;Moises Hernandez;Grant Li;Ariel Pios;Smrithi Rajendiran;Kerri Somebang;Kolton Zepecki-France;Thomas Brennan;Kathleen Boyle;James A. Rakestraw
  • 通讯作者:
    James A. Rakestraw
Pain management in percutaneous nephrolithotomy — an approach rooted in pathophysiology
经皮肾镜取石术中的疼痛管理——一种基于病理生理学的方法
  • DOI:
    10.1038/s41585-024-00973-w
  • 发表时间:
    2025-01-13
  • 期刊:
  • 影响因子:
    14.600
  • 作者:
    Kelli Aibel;Robert Chang;Arinze J. Ochuba;Kevin Koo;Jared S. Winoker
  • 通讯作者:
    Jared S. Winoker
PC038. A Natural History of Acute Type B Aortic Dissections in Northern California
  • DOI:
    10.1016/j.jvs.2019.04.313
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron C. Baker;Stefan Torelli;Hui Kuang;Shiyun Zhu;Matthew Solomon;Randall R. DeMartino;Hong Hua;Robert Chang
  • 通讯作者:
    Robert Chang

Robert Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Chang', 18)}}的其他基金

CAREER: Additive Biomanufacturing an Engineered Stem Cell Microenvironment
职业:工程干细胞微环境的增材生物制造
  • 批准号:
    1554150
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US-Japan Materials Genome (MG) Workshop to be held at the International Congress Center "Epochal Tsukuba" 2-20-3, Takezono, Tsukuba, Ibaraki, 305-0032, Japan; June 23-24, 2015
美日材料基因组 (MG) 研讨会将于国际会议中心“Epochal Tsukuba”2-20-3, Takezono, Tsukuba, Ibaraki, 305-0032, Japan 举行;
  • 批准号:
    1541818
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US-China Grantees Meeting and Collaboration Workshop
中美受资助者会议及合作研讨会
  • 批准号:
    1065906
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US-BrazilWorkshop to Foster US-Brazilian Research Collaborations; Rio de Janeiro, Brazil, Sept 2009
美国-巴西研讨会促进美国-巴西研究合作;
  • 批准号:
    0928698
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
International Materials Institute for Solar Energy Conversion
国际太阳能转换材料研究所
  • 批准号:
    0843962
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
U.S.-Australia Seminar: Electronic Materials Research Collaborations
美国-澳大利亚研讨会:电子材料研究合作
  • 批准号:
    0750743
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Global School for Advanced Studies (GSAS) Sessions on Advanced Solar Cell Research
全球高级研究学院 (GSAS) 高级太阳能电池研究会议
  • 批准号:
    0706439
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Integrating STEM Education Through Technological Design and Inquiry
通过技术设计和探究整合 STEM 教育
  • 批准号:
    0523720
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The Materials World Network, the Next Ten Years; Cancun, Mexico; August 22-25, 2005
材料世界网络,未来十年;
  • 批准号:
    0531420
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Materials World Modules 2002
材料世界模块 2002
  • 批准号:
    0332499
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
  • 批准号:
    2753054
  • 财政年份:
    2026
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
  • 批准号:
    DP240101708
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
  • 批准号:
    2412186
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Designing metallic glass structures for damage tolerance via 3D printing
通过 3D 打印设计金属玻璃结构以实现损伤容限
  • 批准号:
    DP240101127
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Recycling of platinum electrodes demonstrating particulate electrochemical printing - PEP 3d Pt
铂电极的回收展示了颗粒电化学印刷 - PEP 3d Pt
  • 批准号:
    2905755
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
  • 批准号:
    2340268
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FMSG: Cyber: 3D Printing of Holographic Optical Processors
FMSG:网络:全息光学处理器的 3D 打印
  • 批准号:
    2328362
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
3D Printing Electronic Materials
3D打印电子材料
  • 批准号:
    2467147
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
  • 批准号:
    2329739
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了