Cognitive Prediction-Enabled Online Intelligent Fault Diagnosis and Prognosis for Wind Energy Systems

支持认知预测的风能系统在线智能故障诊断和预测

基本信息

  • 批准号:
    1308045
  • 负责人:
  • 金额:
    $ 35.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to study the use of cognitive prediction paradigms for online fault diagnosis and prognosis to enable condition-based smart maintenance for wind energy systems. The approach is to: (1) study the use of time and frequency domain data mining methods to effectively extract the features of faults in a wind turbine from the signals acquired from the wind turbine condition monitoring system; and (2) study the use of artificial neural networks and machine learning for intelligently diagnosing and prognosing faults, predicting the lifetime, and quantitatively evaluating the physical condition of the wind turbine using the extracted fault features.Intellectual Merit: This project will create innovative cognitive prediction-based models and computational algorithms to enhance condition awareness of geographically distributed wind energy systems. The findings of this research are highly transformable and will provide capabilities for enabling condition-based intelligent maintenance for other energy conversion and engineered systems.Broader Impacts: The outcome of this project will further exploit the benefits of wind power by successfully reducing cost and improving reliability of wind energy systems and, therefore, will make wind energy a reliable, cost-competitive source of clean electricity. The increasing use of wind power will benefit various sectors of the nation's economy and contribute to sustainable development of society. Multiple fields covered by this project are areas where a talent shortage is projected in the United States, particularly in the Midwest. The proposed activities will provide a unique learning platform for young individuals to become skilled professionals.
本研究的目的是研究使用认知预测范式进行在线故障诊断和预测,使基于状态的智能维护风能系统。 办法是:(1)研究利用时域和频域数据挖掘方法,从风力涡轮机状态监测系统采集的信号中有效提取风力涡轮机故障特征;(2)研究人工神经网络和机器学习在智能故障诊断和排除中的应用,预测寿命,以及使用所提取的故障特征来定量地评估风力涡轮机的物理状况。这个项目将创造创新的认知预测-的模型和计算算法,以增强地理分布的风能系统的状况意识。 该研究成果具有高度可转换性,将为其他能源转换和工程系统提供基于状态的智能维护能力。更广泛的影响:该项目的成果将通过成功降低成本和提高风能系统的可靠性,进一步利用风能的优势,从而使风能成为可靠的、具有成本竞争力的清洁电力来源。 风力发电的增加将使国家经济的各个部门受益,并有助于社会的可持续发展。 该项目涵盖的多个领域是美国预计人才短缺的领域,特别是在中西部。 拟议的活动将为年轻人成为熟练的专业人员提供一个独特的学习平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Qiao其他文献

Building reliable keypoint matches by a cascade of classifiers with resurrection mechanism
通过具有复活机制的级联分类器构建可靠的关键点匹配
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Jing;Yong Li;Chunxiao Fan;Wei Qiao;Hongbin Jin
  • 通讯作者:
    Hongbin Jin
Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression
转录因子Klf9通过促进肠道Asbt表达控制小鼠胆汁酸重吸收和肠肝循环
  • DOI:
    10.1038/s41401-021-00850-x
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Shuainan Liu;Man Liu;Min Zhang;Cui-Zhe Wang;Zhanqing Li;Chun-Yuan Du;Su-Fang Sheng;Wei Wang;Ya-Tong Fan;Jia-Ni Song;Jiaojiao Huang;Yue-Yao Feng;Wei Qiao;Yongshun Li;Lu Zhou;Jun Zhang;Yongsheng Chang
  • 通讯作者:
    Yongsheng Chang
Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.
用于蛋白质纯化和浓缩的亲和整体集成微芯片。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changlu Gao;Xiuhua Sun;Huaixin Wang;Wei Qiao;Bo Hu
  • 通讯作者:
    Bo Hu
Responsible Eigenvalue Approach for Stability Analysis and Control Design of a Single-Delay Large-Scale System With Random Coupling Strengths
具有随机耦合强度的单延迟大规模系统的稳定性分析和控制设计的负责任特征值方法
  • DOI:
    10.1115/dscc2010-4082
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Qiao;R. Sipahi
  • 通讯作者:
    R. Sipahi
VolQD: direct volume rendering of multi-million atom quantum dot simulations
VolQD:数百万原子量子点模拟的直接体积渲染
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Qiao;D. Ebert;A. Entezari;M. Korkusiński;Gerhard Klimeck
  • 通讯作者:
    Gerhard Klimeck

Wei Qiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Qiao', 18)}}的其他基金

Online Nonintrusive Identification and Monitoring of Internal Weak Points of Electro Energy Devices Using Package Surface Temperature
利用封装表面温度在线非侵入式识别和监测电能设备的内部薄弱点
  • 批准号:
    1663562
  • 财政年份:
    2017
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Self-X Smart Battery
PFI:AIR - TT: Self-X 智能电池
  • 批准号:
    1414393
  • 财政年份:
    2014
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Coordinating Control for the Next-Generation Electric Power System with Significant Wind Penetration
职业:具有显着风穿透力的下一代电力系统的随机优化和协调控制
  • 批准号:
    0954938
  • 财政年份:
    2010
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Intelligent Optimal Mechanical Sensorless Control of Variable-Speed Wind Energy Systems Considering System Uncertainties
考虑系统不确定性的变速风能系统智能最优机械无传感器控制
  • 批准号:
    0901218
  • 财政年份:
    2009
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Student and Junior Faculty Travel Support for the first IEEE Symposium on Power Electronics and Machines in Wind Applications (PEMWA 2009). To Be Held in Nebraska, on June 24-26,
为第一届 IEEE 风力应用电力电子和机器研讨会 (PEMWA 2009) 的学生和初级教师提供差旅支持。
  • 批准号:
    0921141
  • 财政年份:
    2009
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326341
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Machine Learning Enabled Non-contact Sensing Platform for Blood Pressure and Glucose Prediction
用于血压和血糖预测的机器学习非接触式传感平台
  • 批准号:
    23K11341
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326340
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
  • 批准号:
    10416206
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
AI-enabled Stroke Prediction in Patients with Chronic Kidney Disease
基于人工智能的慢性肾病患者中风预测
  • 批准号:
    10481070
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
ERI: High-performance Human-robot Collaborative Manufacturing Enabled by Integrated Multimodal Teaching, Learning, Prediction and Interaction
ERI:通过集成多模态教学、学习、预测和交互实现高性能人机协作制造
  • 批准号:
    2138351
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
PFI-RP: Smart Seizure Prediction System based on AI-enabled Implantable Sensor Networks
PFI-RP:基于人工智能的可植入传感器网络的智能癫痫预测系统
  • 批准号:
    2214013
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
ERI: Prediction-Enabled Safe and Productive Human-Robot Collaboration in Dynamic and Uncertain Construction Workspaces
ERI:在动态和不确定的施工工作空间中实现预测的安全且高效的人机协作
  • 批准号:
    2138514
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
PFI-TT: Artificial Intelligence-enabled Real-time System for Early Epileptic Seizure Detection and Prediction
PFI-TT:用于早期癫痫发作检测和预测的人工智能实时系统
  • 批准号:
    2213951
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
  • 批准号:
    10698122
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了