Rectifiability and Elliptic Partial Differential Equations
可修正性和椭圆偏微分方程
基本信息
- 批准号:1664047
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies at the interface of geometric measure theory and partial differential equations, and it will utilize techniques from harmonic analysis. In geometric measure theory, one studies geometric properties of sets via the behavior of some measure on them (the concept of "measure" generalizes the notions of length, area, and volume). In this project, the sort of set under consideration is typically the boundary (i.e., the enclosing perimeter) of some region in space, and for this a specific measure -- namely, "harmonic measure"-- plays a central role. Harmonic measure and its generalizations may be used to construct solutions in some region, with prescribed boundary values, to partial differential equations of so-called "elliptic" type. Such equations govern various steady-state phenomena in the real world, including electrostatics and steady-state temperature distributions. For example, harmonic measure may be used to determine the steady-state temperature distribution within some region, given a known temperature distribution on the perimeter of the region. Unsurprisingly, the geometry of the region and its boundary greatly affect one's ability to carry out such a program in practice. A principal goal of this project is to quantify, in a natural sense, the connection between geometry and the behavior of harmonic measure and its generalizations.The project has two main areas of focus. First, the principal investigator plans to find an intrinsically geometric characterization of quantitative absolute continuity of harmonic measure with respect to surface measure, on the boundary of an open set in d-dimensional Euclidean space. He expects that such a characterization should comprise two parts: a quantitative rectifiablity property of the boundary, plus scale invariant nontangential accessibility to ample portions of the boundary. Related to this work, the principal investigator also plans to investigate the analogous question concerning quantitative absolute continuity of elliptic-harmonic measure associated to a more general second-order elliptic operator. Second, the principal investigator will study the solvability of other boundary value problems for elliptic equations, in several different settings. More precisely, he intends to work toward an improved understanding of the Neumann problem in domains more general than Lipschitz domains and for nonsymmetric divergence form operators. As a first step, he plans to consider a certain family of transmission problems, for which the Neumann problem is an endpoint case. He also plans to treat boundary-value problems for certain higher-order divergence-form elliptic operators.
该项目处于几何测量理论和偏微分方程的接口,它将利用调和分析技术。在几何测度论中,人们通过一些测度在集合上的行为来研究集合的几何性质(“测度”的概念推广了长度、面积和体积的概念)。在这个项目中,所考虑的集合类型通常是边界(即,空间中某个区域的围界),为此,一个特定的测度--即“调和测度”--起着核心作用。 调和测度及其推广可以用来构造所谓“椭圆”型偏微分方程在某些区域上的解,并具有给定的边值。 这些方程支配着真实的世界中的各种稳态现象,包括静电和稳态温度分布。 例如,谐波测量可以用于确定某个区域内的稳态温度分布,给定该区域周边上的已知温度分布。毫不奇怪,该区域的几何形状及其边界极大地影响了人们在实践中执行这样一个程序的能力。 该项目的主要目标是在自然意义上量化几何与调和测度及其推广行为之间的联系。该项目有两个主要关注领域。首先,主要研究者计划在d维欧氏空间的开集的边界上,找到调和测度相对于表面测度的定量绝对连续性的内在几何表征。 他预计,这样的表征应该包括两个部分:一个定量的rectifiablity属性的边界,加上规模不变的非切向访问充足的部分边界。 与这项工作相关的是,主要研究者还计划研究与更一般的二阶椭圆算子相关的椭圆调和测度的定量绝对连续性的类似问题。 其次,主要研究者将研究其他椭圆方程边值问题的可解性,在几个不同的设置。 更确切地说,他打算努力提高对诺依曼问题的理解,在比Lipschitz域更一般的域和非对称发散形式算子。作为第一步,他计划考虑一个特定的家庭的传输问题,其中诺依曼问题是一个端点的情况。他还计划处理某些高阶发散型椭圆算子的边值问题。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dirichlet and Neumann boundary values of solutions to higher order elliptic equations
高阶椭圆方程解的狄利克雷和诺依曼边界值
- DOI:10.5802/aif.3278
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Barton, Ariel;Hofmann, Steve;Mayboroda, Svitlana
- 通讯作者:Mayboroda, Svitlana
Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries
具有 Ahlfors-David 正则边界的单边 NTA 域上的可修正性和椭圆测度
- DOI:10.1090/tran/6927
- 发表时间:2017
- 期刊:
- 影响因子:1.3
- 作者:Akman, Murat;Badger, Matthew;Hofmann, Steve;Martell, Jose Maria
- 通讯作者:Martell, Jose Maria
Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition
满足容量密度条件的1边NTA域中椭圆算子的平方函数和非切向极大函数估计
- DOI:10.1515/acv-2021-0053
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Akman, Murat;Hofmann, Steve;Martell, José María;Toro, Tatiana
- 通讯作者:Toro, Tatiana
Quantitative Fatou Theorems and Uniform Rectifiability
定量Fatou定理和一致可整流性
- DOI:10.1007/s11118-019-09771-1
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:Bortz, Simon;Hofmann, Steve
- 通讯作者:Hofmann, Steve
Corona Decompositions for Parabolic Uniformly Rectifiable Sets
抛物线均匀可整流集的 Corona 分解
- DOI:10.1007/s12220-022-01176-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bortz, S.;Hoffman, J.;Hofmann, S.;Luna-Garcia, J. L.;Nyström, K.
- 通讯作者:Nyström, K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Hofmann其他文献
Steven Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Hofmann', 18)}}的其他基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
- 批准号:
2000048 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Analysis in Missouri: a Midwestern Symposium
密苏里州的分析:中西部研讨会
- 批准号:
1901871 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Uniform Rectifiability and Elliptic Equations
一致可整流性和椭圆方程
- 批准号:
1361701 - 财政年份:2014
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
- 批准号:
1101244 - 财政年份:2011
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Tb Theorems, Singular Integrals, Poisson Kernels, and Regularity of Boundaries
Tb 定理、奇异积分、泊松核和边界正则性
- 批准号:
0801079 - 财政年份:2008
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Conference on Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程会议
- 批准号:
0222187 - 财政年份:2002
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0088920 - 财政年份:2000
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Elliptic partial differential equations: theory and applications
椭圆偏微分方程:理论与应用
- 批准号:
RGPIN-2015-05713 - 财政年份:2021
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Grants Program - Individual
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
- 批准号:
2110886 - 财政年份:2021
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2021
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Grants Program - Individual
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant