Rectifiability and Elliptic Partial Differential Equations
可修正性和椭圆偏微分方程
基本信息
- 批准号:1664047
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies at the interface of geometric measure theory and partial differential equations, and it will utilize techniques from harmonic analysis. In geometric measure theory, one studies geometric properties of sets via the behavior of some measure on them (the concept of "measure" generalizes the notions of length, area, and volume). In this project, the sort of set under consideration is typically the boundary (i.e., the enclosing perimeter) of some region in space, and for this a specific measure -- namely, "harmonic measure"-- plays a central role. Harmonic measure and its generalizations may be used to construct solutions in some region, with prescribed boundary values, to partial differential equations of so-called "elliptic" type. Such equations govern various steady-state phenomena in the real world, including electrostatics and steady-state temperature distributions. For example, harmonic measure may be used to determine the steady-state temperature distribution within some region, given a known temperature distribution on the perimeter of the region. Unsurprisingly, the geometry of the region and its boundary greatly affect one's ability to carry out such a program in practice. A principal goal of this project is to quantify, in a natural sense, the connection between geometry and the behavior of harmonic measure and its generalizations.The project has two main areas of focus. First, the principal investigator plans to find an intrinsically geometric characterization of quantitative absolute continuity of harmonic measure with respect to surface measure, on the boundary of an open set in d-dimensional Euclidean space. He expects that such a characterization should comprise two parts: a quantitative rectifiablity property of the boundary, plus scale invariant nontangential accessibility to ample portions of the boundary. Related to this work, the principal investigator also plans to investigate the analogous question concerning quantitative absolute continuity of elliptic-harmonic measure associated to a more general second-order elliptic operator. Second, the principal investigator will study the solvability of other boundary value problems for elliptic equations, in several different settings. More precisely, he intends to work toward an improved understanding of the Neumann problem in domains more general than Lipschitz domains and for nonsymmetric divergence form operators. As a first step, he plans to consider a certain family of transmission problems, for which the Neumann problem is an endpoint case. He also plans to treat boundary-value problems for certain higher-order divergence-form elliptic operators.
该项目位于几何测量理论和部分微分方程的界面,它将利用谐波分析的技术。在几何测量理论中,一个人通过某种度量的行为研究集合的几何特性(“测量”的概念概括了长度,面积和体积的概念)。在该项目中,所考虑的设置通常是空间中某些区域的边界(即封闭的周长),而对于这一特定措施(即“谐波度量”)起着核心作用。 谐波度量及其概括可用于在某些区域构建解决方案,并具有规定的边界值,用于所谓的“椭圆”类型的部分微分方程。 这种方程控制现实世界中的各种稳态现象,包括静电和稳态温度分布。 例如,给定该区域周长的已知温度分布,可以使用谐波度量来确定某些区域内的稳态温度分布。毫不奇怪,该地区及其边界的几何形状极大地影响了一个人在实践中执行这样的程序的能力。 该项目的主要目标是从自然意义上量化几何形状与谐波测量及其概括之间的联系。该项目具有两个主要重点领域。首先,主要研究者计划在d维欧几里得空间中的开放式集合的边界上找到谐波测量的定量绝对连续性的本质几何表征。 他期望这样的特征应包括两个部分:边界的定量整流性质,以及对边界充足部分的规模不变的非倾斜度可访问性。 与这项工作相关的是,首席研究人员还计划研究与更一般的二阶椭圆运算符相关的椭圆谐波措施的定量绝对连续性的类似问题。 其次,主要研究者将在几种不同的环境中研究椭圆方程其他边界价值问题的可溶性。 更确切地说,他打算与Lipschitz域更笼统地对诺伊曼问题和非对称差异形式的运算符进行更笼统的诺曼问题的理解。作为第一步,他计划考虑某种传播问题,而诺伊曼问题是终点案例。他还计划治疗某些高阶差异椭圆算子的边界值问题。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dirichlet and Neumann boundary values of solutions to higher order elliptic equations
高阶椭圆方程解的狄利克雷和诺依曼边界值
- DOI:10.5802/aif.3278
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Barton, Ariel;Hofmann, Steve;Mayboroda, Svitlana
- 通讯作者:Mayboroda, Svitlana
Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition
满足容量密度条件的1边NTA域中椭圆算子的平方函数和非切向极大函数估计
- DOI:10.1515/acv-2021-0053
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Akman, Murat;Hofmann, Steve;Martell, José María;Toro, Tatiana
- 通讯作者:Toro, Tatiana
Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries
具有 Ahlfors-David 正则边界的单边 NTA 域上的可修正性和椭圆测度
- DOI:10.1090/tran/6927
- 发表时间:2017
- 期刊:
- 影响因子:1.3
- 作者:Akman, Murat;Badger, Matthew;Hofmann, Steve;Martell, Jose Maria
- 通讯作者:Martell, Jose Maria
Corona Decompositions for Parabolic Uniformly Rectifiable Sets
抛物线均匀可整流集的 Corona 分解
- DOI:10.1007/s12220-022-01176-8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bortz, S.;Hoffman, J.;Hofmann, S.;Luna-Garcia, J. L.;Nyström, K.
- 通讯作者:Nyström, K.
Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition
满足容量密度条件的1边NTA域中椭圆算子的摄动
- DOI:10.1515/forum-2022-0323
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Akman, Murat;Hofmann, Steve;Martell, José María;Toro, Tatiana
- 通讯作者:Toro, Tatiana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Hofmann其他文献
Steven Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Hofmann', 18)}}的其他基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
- 批准号:
2000048 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Analysis in Missouri: a Midwestern Symposium
密苏里州的分析:中西部研讨会
- 批准号:
1901871 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Uniform Rectifiability and Elliptic Equations
一致可整流性和椭圆方程
- 批准号:
1361701 - 财政年份:2014
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
- 批准号:
1101244 - 财政年份:2011
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Tb Theorems, Singular Integrals, Poisson Kernels, and Regularity of Boundaries
Tb 定理、奇异积分、泊松核和边界正则性
- 批准号:
0801079 - 财政年份:2008
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Conference on Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程会议
- 批准号:
0222187 - 财政年份:2002
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
0088920 - 财政年份:2000
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
相似国自然基金
低对称性椭圆形磁性纳米线的制备与磁性研究
- 批准号:12275114
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
塑料排水板地基精细固结理论及优化设计方法
- 批准号:51878185
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
椭圆形FRP-混凝土-钢双壁空心管柱力学性能及设计方法研究
- 批准号:51778102
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
一些椭圆形方程反问题的Tikhonov正则化方法的收敛速度
- 批准号:11701205
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
椭圆形FRP-混凝土-钢组合空心柱的截面优化和抗震性能研究
- 批准号:51608263
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
- 批准号:
RGPIN-2018-06371 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Grants Program - Individual