Braids in Algebra, Geometry, and Topology
代数、几何和拓扑中的辫子
基本信息
- 批准号:1664688
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project supports the participation of US based researchers in a conference on braid groups to be held from May 22, 2017 until May 26, 2017 at the International Centre for Mathematical Sciences (ICMS) in Edinburgh, Scotland. Informally, braid groups encode the way that a collection of particles can move around each other in space. They were introduced by Emil Artin in the early 20th century and have since played an increasingly important role in both mathematics and physics. New applications for them continue to be found, often in areas of research that seemingly have little connection to braid groups' humble physical origins.This conference will bring together researchers in a wide variety of fields in which braid groups play a role. Areas of particular focus include algebraic geometry, number theory, low-dimensional topology, and geometric group theory. Though these subjects all make use of braid groups, workers in them often are not aware of the tools used to study braid groups in other fields. The purpose of this conference is to bring all these different people together to learn about the problems that are of interest in other subareas and to foment inter-disciplinary collaboration. The website of the conference ishttp://www.icms.org.uk/workshop.php?id=421
该项目支持美国的研究人员参加2017年5月22日至26日在苏格兰爱丁堡国际数学科学中心(ICMS)举行的关于辫子群的会议。非正式地,辫子群对一组粒子在空间中相互移动的方式进行编码。它们是由埃米尔·阿尔廷在20世纪初提出的,此后在数学和物理学中发挥着越来越重要的作用。它们的新应用不断被发现,通常是在似乎与辫子群卑微的物理起源几乎没有联系的研究领域。这次会议将把辫子群发挥作用的各种领域的研究人员聚集在一起。特别关注的领域包括代数几何、数论、低维拓扑和几何群论。虽然这些研究对象都利用了辫子群,但他们中的工作者往往不知道在其他领域研究辫子群所用的工具。这次会议的目的是将所有这些不同的人聚集在一起,了解其他分领域感兴趣的问题,并促进跨学科合作。会议的网址是http://www.icms.org.uk/workshop.php?id=421。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Putman其他文献
A note on the connectivity of certain complexes associated to surfaces
- DOI:
10.5169/seals-109940 - 发表时间:
2006-12 - 期刊:
- 影响因子:0
- 作者:
Andrew Putman - 通讯作者:
Andrew Putman
Small generating sets for the Torelli group
Torelli 集团的小型发电机组
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Andrew Putman - 通讯作者:
Andrew Putman
The dualizing module and top-dimensional cohomology group of
$$hbox {GL}_n(mathcal {O})$$
GL
n
$$hbox {GL}_n(mathcal {O})$$ GL n 的对偶模和顶维上同调群
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.8
- 作者:
Andrew Putman;Daniel Studenmund - 通讯作者:
Daniel Studenmund
The action on homology of finite groups of automorphisms of surfaces and graphs
曲面和图的有限自同构群的同调作用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew Putman - 通讯作者:
Andrew Putman
An Infinite Presentation of the Torelli Group
Torelli 集团的无限展示
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Andrew Putman - 通讯作者:
Andrew Putman
Andrew Putman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Putman', 18)}}的其他基金
Topological aspects of infinite group theory
无限群论的拓扑方面
- 批准号:
2305183 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
CAREER: The topology of infinite groups
职业:无限群的拓扑
- 批准号:
1737434 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
CAREER: The topology of infinite groups
职业:无限群的拓扑
- 批准号:
1255350 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
The algebra and topology of the mapping class group
映射类群的代数和拓扑
- 批准号:
1005318 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
- 批准号:
2302373 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant














{{item.name}}会员




