Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
基本信息
- 批准号:2302373
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is the study of spaces that arise as solution sets to systems of polynomial equations; such spaces play an important role throughout mathematics and the sciences. A fundamental question in algebraic geometry is: what does the geometry of such a space tell one about the polynomials that determine it? The overarching goal of the PI’s research is to use techniques in computational algebra to study open problems on this theme. This research will lead to the development of new software for the open-source computational algebra system Macaulay2. The PI will also continue his outreach to veterans in mathematics at Auburn University, in collaboration with the university’s Veterans Resource Center.The PI will adapt the techniques of the geometry of syzygies from projective geometry to toric geometry. In particular, the PI will use techniques in commutative algebra to make progress on conjectures of Berkesch-Erman-Smith and Orlov on the homological properties of toric varieties. The PI will also generalize, from the projective to the weighted projective setting, a celebrated theorem of Green on the linearity of free resolutions of curves embedded in projective space. In a third project, the PI will develop an efficient algorithm for computing sheaf cohomology over smooth projective toric varieties by generalizing an algorithm due to Eisenbud-Fløystad-Schreyer that applies to sheaves on projective space. The PI will also explain a periodicity phenomenon for the Fitting ideals of free resolutions over complete intersections, leveraging work of Eisenbud-Peeva on the structure of such resolutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是研究作为多项式方程组的解集而出现的空间;这样的空间在整个数学和科学中起着重要的作用。代数几何中的一个基本问题是:这样一个空间的几何告诉我们关于决定它的多项式的什么?PI研究的首要目标是使用计算代数中的技术来研究这一主题的开放问题。这项研究将为开源计算代数系统Macaulay 2开发新软件。PI还将继续他的推广活动,以退伍军人在数学奥本大学,与大学的退伍军人资源中心合作。PI将适应技术的几何syzygies从射影几何复曲面几何。特别是,PI将使用交换代数的技术,在Berkesch-Erman-Smith和奥尔洛夫关于环面簇的同调性质的论文上取得进展。PI还将推广,从投影到加权投影设置,著名的绿色定理的线性自由决议的曲线嵌入投影空间。在第三个项目中,PI将开发一个有效的算法,通过推广Eisenbud-Fløystad-Schreyer的算法来计算光滑投射环面簇上的层上同调。PI还将利用Eisenbud-Peeva在此类决议结构方面的工作,解释完全交叉点上自由决议的Fitting理想的周期性现象。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brown其他文献
Paleoarchean metamorphism in the Acasta Gneiss Complex: Constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology
阿卡斯塔片麻岩杂岩中的古太古代变质作用:来自相平衡模型和原位石榴石 Lu-Hf 地质年代学的约束
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
J. Kaempf;Tim E. Johnson;C. Clark;J. Alfing;Michael Brown;P. Lanari;Kai Rankenburg - 通讯作者:
Kai Rankenburg
Plate margin processes and ‘paired’ metamorphic belts in Japan: Comment on ‘Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts’ by H. Iwamori
日本的板块边缘过程和“成对”变质带:评论 H. Iwamori 的“山脊俯冲的热效应及其对花岗岩岩基和成对变质带起源的影响”
- DOI:
10.1016/s0012-821x(02)00582-4 - 发表时间:
2002 - 期刊:
- 影响因子:5.3
- 作者:
Michael Brown - 通讯作者:
Michael Brown
Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila
阿米巴内和其他生长条件对嗜肺军团菌表面特性的影响
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:3.1
- 作者:
J. Barker;Peter A. Lambert;Michael Brown - 通讯作者:
Michael Brown
Some observations on Statnamic pile testing
静态桩测试的一些观察
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Michael Brown;A. Hyde - 通讯作者:
A. Hyde
Polyethylene Glycol-3350 (Miralax®)+1.9-L sports drink (Gatorade®)+2 tablets of bisacodyl results in inferior bowel preparation for colonoscopy compared with Polyethylene Glycol-Ascorbic Acid (MoviPrep®).
与聚乙二醇抗坏血酸 (MoviPrep®) 相比,聚乙二醇-3350 (Miralax®)+1.9 L 运动饮料 (Gatorade®)+2 片比沙可啶导致结肠镜检查的肠道准备较差。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Khan;K. Patel;M. Nooruddin;Garth B. Swanson;L. Fogg;A. Keshavarzian;Michael Brown - 通讯作者:
Michael Brown
Michael Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brown', 18)}}的其他基金
STTR Phase I: Solar-driven, thermally responsive membranes for off-grid water purification
STTR 第一阶段:用于离网水净化的太阳能驱动热响应膜
- 批准号:
2213218 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Simons Observatory:UK technology development and demonstration
西蒙斯天文台:英国技术开发与示范
- 批准号:
ST/X006336/1 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Offshore Cable Burial: How deep is deep enough?
海上电缆埋设:多深才算足够深?
- 批准号:
EP/W000997/1 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Research Grant
SO:UK - A major UK contribution to Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
- 批准号:
ST/X006344/1 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Research Grant
SO:UK - A major UK contribution to the Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
- 批准号:
ST/W002914/1 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Collisional fragments of Jupiter Trojans as windows into the formation of the solar system
木星特洛伊木马的碰撞碎片是了解太阳系形成的窗口
- 批准号:
2109212 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Doctoral Consortium Workshop at the Learning Analytics and Knowledge Conference 2020
2020 年学习分析和知识会议上的博士联盟研讨会
- 批准号:
1951865 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Catalyzing Student Success: Implementing Cyberlearning Tools in Large Introductory Courses in the Chemical Engineering Pathway
促进学生成功:在化学工程途径的大型入门课程中实施网络学习工具
- 批准号:
1928842 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
MRI: Acquisition of a 500 MHz State-of-the-Art Nuclear Magnetic Resonance (NMR)Spectrometer
MRI:购买 500 MHz 最先进的核磁共振 (NMR) 波谱仪
- 批准号:
1920026 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
- 批准号:
2302682 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
- 批准号:
2302341 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Conference: Gender Equity in the Mathematical Study (GEMS) of Commutative Algebra
会议:交换代数数学研究(GEMS)中的性别平等
- 批准号:
2332592 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant