Geometric Methods in the Analytic Theory of Differential Equations
微分方程解析论中的几何方法
基本信息
- 批准号:1665115
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theory of differential equations is a fundamental mathematical tool of physics and engineering. Few differential equations can be solved explicitly, and approximate numerical solutions do not always give essential features of the behavior of exact solutions. A class of simple differential equations that frequently occur in applications has been studied by mathematicians for centuries; their solutions are called special functions of mathematical physics, and they are widely used in science. The general goal of this project is to extend this class of well-understood equations. Building on earlier work relevant for applications to physics, control theory, and materials science, this project aims to apply a variety of recently-developed methods to study longstanding questions of intrinsic mathematical interest. The work is anticipated to further improve understanding of the qualitative features of analytic functions defined by some basic differential equations arising in mathematical physics and geometry.Most of the special functions of mathematical physics are defined by linear differential equations with at most three singularities. Solutions of the Heun equation (with four regular singularities) and the Painlevé VI equation (non-linear, with four fixed singularities and no movable singularities) lie on the boundary of the class of special functions. Because of their intrinsic mathematical interest and numerous applications in science, they have been extensively studied since the beginning of the 20th century. This research project aims to advance understanding of these important functions through the use of new geometric methods. The main topics of this project are the qualitative study of real solutions of the Painlevé VI equation, the study of Riemannian metrics of constant positive curvature with conic singularities, with the emphasis on the metrics with four singularities closely related to the Heun equation, and finally the study of the eigenvalues of some parity-time symmetric anharmonic oscillators.
微分方程理论是物理学和工程学的基本数学工具。很少有微分方程可以显式求解,近似数值解并不总是给出精确解行为的基本特征。一类在应用中经常出现的简单微分方程,几个世纪以来一直被数学家研究;它们的解被称为数学物理的特殊函数,在科学中有着广泛的应用。这个项目的总体目标是扩展这类很好理解的方程。在与物理学,控制理论和材料科学应用相关的早期工作的基础上,该项目旨在应用各种最近开发的方法来研究内在数学兴趣的长期问题。本文的工作将进一步加深对数学物理和几何中的一些基本微分方程所定义的解析函数的定性特征的理解。数学物理中的大多数特殊函数都是由至多具有三个奇点的线性微分方程所定义的。Heun方程(有四个正则奇点)和Painlevé VI方程(非线性,有四个固定奇点,没有可动奇点)的解位于特殊函数类的边界上。由于其内在的数学兴趣和在科学中的众多应用,自世纪以来,它们一直被广泛研究。该研究项目旨在通过使用新的几何方法来促进对这些重要功能的理解。该项目的主要课题是Painlevé VI方程的真实的解的定性研究,具有圆锥奇点的常正曲率Riemannian度量的研究,重点是与Heun方程密切相关的四个奇点的度量,最后是一些宇称对称非简谐振子本征值的研究。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fuchsian Equations with Three Non-Apparent Singularities
- DOI:10.3842/sigma.2018.058
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:A. Eremenko;V. Tarasov
- 通讯作者:A. Eremenko;V. Tarasov
Quasiconformal surgery and linear differential equations
- DOI:10.1007/s11854-019-0007-9
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:W. Bergweiler;A. Eremenko
- 通讯作者:W. Bergweiler;A. Eremenko
PT-symmetric eigenvalues for homogeneous potentials
齐次势的 PT 对称特征值
- DOI:10.1063/1.5016390
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Eremenko, Alexandre;Gabrielov, Andrei
- 通讯作者:Gabrielov, Andrei
On the number of solutions of some transcendental equations
关于一些超越方程的解数
- DOI:10.1007/s13324-017-0204-6
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Bergweiler, Walter;Eremenko, Alexandre
- 通讯作者:Eremenko, Alexandre
Entire functions with two radially distributed values
- DOI:10.1017/s0305004117000305
- 发表时间:2015-09
- 期刊:
- 影响因子:0.8
- 作者:W. Bergweiler;A. Eremenko;A. Hinkkanen
- 通讯作者:W. Bergweiler;A. Eremenko;A. Hinkkanen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandre Eremenko其他文献
On the Shapes of Rational Lemniscates
- DOI:
10.1007/s00039-025-00704-2 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:2.500
- 作者:
Christopher J. Bishop;Alexandre Eremenko;Kirill Lazebnik - 通讯作者:
Kirill Lazebnik
Lyubich: Dynamical properties of some classes of entire functions
Lyubich:整个函数的某些类的动态属性
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Alexandre Eremenko;M. Yu - 通讯作者:
M. Yu
Extremal holomorphic curves for defect relations
- DOI:
10.1007/bf02819454 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alexandre Eremenko - 通讯作者:
Alexandre Eremenko
On the riesz charge of the lower envelope of δ-subharmonic functions
- DOI:
10.1007/bf01789240 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexandre Eremenko;Bent Fuglede;Mikhail Sodin - 通讯作者:
Mikhail Sodin
Non-Algebraic Quadrature Domains
- DOI:
10.1007/s11118-012-9297-6 - 发表时间:
2012-07-17 - 期刊:
- 影响因子:0.800
- 作者:
Alexandre Eremenko;Erik Lundberg - 通讯作者:
Erik Lundberg
Alexandre Eremenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandre Eremenko', 18)}}的其他基金
Meromorphic functions and their applications
亚纯函数及其应用
- 批准号:
1067886 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244547 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Geometric Theory of Meromorphic Functions
亚纯函数的几何理论
- 批准号:
0100512 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Meromorphic Functions and Holomorphic Curves
亚纯函数和全纯曲线
- 批准号:
9800084 - 财政年份:1998
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Meromorphic Functions
数学科学:亚纯函数
- 批准号:
9500636 - 财政年份:1995
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Fourier analytic methods in convex geometry and geometric tomography
凸几何和几何断层扫描中的傅立叶分析方法
- 批准号:
RGPIN-2019-06013 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Fourier analytic methods in convex geometry and geometric tomography
凸几何和几何断层扫描中的傅立叶分析方法
- 批准号:
RGPIN-2019-06013 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Fourier analytic methods in convex geometry and geometric tomography
凸几何和几何断层扫描中的傅立叶分析方法
- 批准号:
RGPIN-2019-06013 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Fourier analytic methods in convex geometry and geometric tomography
凸几何和几何断层扫描中的傅立叶分析方法
- 批准号:
RGPIN-2019-06013 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual